July 17, 2019

New research unfolds the DNA “origami” behind brain cancers

Collaborative research group maps the three-dimensional genomic structure of glioblastoma and discovers a new therapeutic strategy to eliminate cells at the roots of these brain tumours

Current treatment for glioblastoma – the most common type of malignant brain cancer in adults – is often palliative, but new research approaches have pointed to new promising therapeutic strategies.

A collaborative study, recently published in Genome Research, has mapped the three-dimensional configuration of the genome in glioblastoma and discovered a new way to target glioblastoma stem cells – the self-renewing cells that are thought to be the root cause of tumour recurrence.

The research group integrated three-dimensional genome maps of glioblastoma with other chromatin and transcriptional datasets to describe the mechanisms regulating gene expression and detail the mechanisms that are specific to glioblastoma stem cells. They are one of the first groups in the world to perform three-dimensional genomic analyses in patient-derived tumour samples.

Dr. Mathieu Lupien

“The 3D configuration of the genome has garnered much attention over the last decade as a complex, dynamic and crucial feature of gene regulation,” says Dr. Mathieu Lupien, Senior Scientist at the Princess Margaret Cancer Centre, OICR Investigator and co-author of the study. “Looking at how the genome is folded and sets contacts between regions tens to thousands of kilobases apart allowed us to find a new way to potentially tackle glioblastoma.”

Through their study, the group discovered that CD276 – a gene which is normally involved with repressing immune responses – has a very important role in maintaining stem-cell-like properties in glioblastoma stem cells. Further, they showed that targeting CD276 may be an effective new strategy to kill cancer stem cells in these tumours.

Lupien adds that advancements in three-dimensional genomics can only be made through collaborative efforts, like this initiative, which was enabled by OICR through Stand Up 2 Cancer Canada Cancer Stem Cell Dream Team, OICR’s Brain Cancer Translational Research Initiative and other funding initiatives.

“This research was fueled by an impressive community of scientists in the area who are committed to finding new solutions for patients with brain cancer,” Lupien says. “Our findings have emphasized the significance of three-dimensional architectures in genomic studies and the need to further develop related methodologies to make sense of this intricacies.”

Senior author of the study, Dr. Marco Gallo will continue to investigate CD276 as a potential therapeutic target for glioblastoma. He plans to further delineate the architecture of these cancer stem cells to identify more new strategies to tackle brain tumours.

Dr. Marco Gallo

“A key problem with current glioblastoma treatments is that they mostly kill proliferating cells, whereas we know that glioblastoma stem cells are slow-cycling, or dormant. Markers like CD276 can potentially be targeted with immunotherapy approaches, which could be an effective way of killing cancer stem cells, irrespective of how slowly they proliferate,” says Gallo, who is an Assistant Professor at the University of Calgary. “Being able to kill cancer stem cells in glioblastoma could have strong implications for our ability to prevent relapses.”

Read more about OICR’s Brain Cancer Translational Research Initiative on oicr.on.ca or read about the Initiative’s current findings on OICR News.

August 16, 2018

Researchers find common cell process key to therapy resistance

Ottawa researchers discover a new way to make cancer cells more susceptible to virus-based therapies

Over the past decade, researchers have made significant progress in designing oncolytic viruses (OVs) – viruses that destroy cancer cells while leaving healthy tissue unharmed. However, some cancer cells are resistant to this type of therapy and their resistance mechanisms remain poorly understood.

Researchers at the The Ottawa Hospital and University of Ottawa, under the leadership of Dr. Carolina Ilkow, have discovered that a common cellular mechanism, RNAi, allows cancer cells to fight back against cancer-fighting viruses. Their findings, recently published in the Journal for Immunotherapy of Cancer, show that blocking RNAi processes in tumours can make cancer cells more susceptible to OVs.

Continue reading – Researchers find common cell process key to therapy resistance

May 17, 2018

Combination of erectile dysfunction drugs and flu vaccine may help kill remaining cancer after surgery

A flu vaccine sits on top of packages of erectile dysfunction drugs

A remarkable study led by Dr. Rebecca Auer from The Ottawa Hospital (TOH) shows that the unlikely combination of erectile dysfunction drugs and the flu vaccine may boost the immune system’s ability to clean up cancer cells left behind after surgery. This method demonstrated promising results in a mouse model, where it reduced the spread of cancer following surgery by 90 per cent. Now the approach will be tested in a first-of-its-kind clinical trial involving 24 patients at TOH.

Continue reading – Combination of erectile dysfunction drugs and flu vaccine may help kill remaining cancer after surgery

March 8, 2018

Collaborating to bring new treatment options to children with brain cancer

Medulloblastoma cells as seen under a microscope

OICR’s Brain Cancer Translational Research Initiative (TRI) and the Terry Fox Precision Oncology for Young People Program (PROFYLE) are partnering to share data and deliver improved treatment options to young brain cancer patients.

Continue reading – Collaborating to bring new treatment options to children with brain cancer

January 30, 2018

Early results from COMPASS trial demonstrate benefits of using genomic sequencing to guide treatment for pancreatic cancer

Pancreatic Cancer and compass icon

Genomic profiling has allowed physicians to customize treatments for patients with many types of cancer, but bringing this technology to bear against advanced pancreatic cancer has proven to be extremely difficult. OICR’s pancreatic cancer Translational Research Initiative, called PanCuRx, has been conducting a first-of-its-kind clinical trial called COMPASS to evaluate the feasibility of using real time genomic sequencing in pancreatic cancer care. The research team recently reported early results from the trial, which show how they overcame the challenges of genomic profiling specific to pancreatic cancer and gained new insights about the disease.

PanCuRx is focused on improving treatment for pancreatic adenocarcinoma (PDAC), the most common form of pancreatic cancer and the fourth leading cause of cancer death in Canada. The group’s approach centres around understanding the genetics and biology of PDAC to inform the selection of therapies, as well as the development of new treatments.

Continue reading – Early results from COMPASS trial demonstrate benefits of using genomic sequencing to guide treatment for pancreatic cancer

January 4, 2018

Study shows virus-boosted immunotherapy can be effective against aggressive breast cancer

The Maraba virus is seen under an electron microscope

Researchers at The Ottawa Hospital and the University of Ottawa have found that a combination of two immunotherapies – oncolytic viruses and checkpoint inhibitors – was successful in treating triple-negative breast cancer in mouse models. Triple-negative breast cancer is the most aggressive and hard-to-treat form of the disease.

Continue reading – Study shows virus-boosted immunotherapy can be effective against aggressive breast cancer

October 20, 2017

Old drug, new trick: study finds common diabetes drug could help fight leukemia

Researchers have discovered a new potential treatment for acute myeloid leukemia (AML). They found that boosting fat cells (adipocytes) within bone marrow with the use of a common diabetes drug slowed the growth of cancerous cells and promoted the regeneration of healthy blood cells.

Continue reading – Old drug, new trick: study finds common diabetes drug could help fight leukemia

September 6, 2017

Large-scale genomic study helps set new course for paediatric brain cancer research

Dr. Michael Taylor

Today’s therapies for medulloblastoma, a highly aggressive form of childhood brain cancer, bring benefits to young patients but also come with serious side effects. Dr. Michael Taylor and a team of international collaborators recently published results in Nature of an ambitious project that analyzed the genomes of around 500 cases of medulloblastoma. Their goal was to identify gene mutations that are commonly mutated in the cancer, but not in the normal cells of patients.

Continue reading – Large-scale genomic study helps set new course for paediatric brain cancer research

August 30, 2017

Tracking glioblastoma as it develops

Dr. Peter Dirks

An international team of scientists have used an innovative barcode-like system to track the behaviour of individual glioblastoma cells, allowing them to see how the cells of this deadly form of brain cancer have successfully evaded treatment and how they spread.

Continue reading – Tracking glioblastoma as it develops

July 12, 2017

Ovarian cancer research team working to exploit disease’s vulnerabilities

Drs. Amit Oza and Rob Rottapel

Given the advancements in treating many other types of cancer, it may come as a surprise that outcomes for patients with the most deadly form of ovarian cancer have not improved in 50 years. This form, known as High Grade Serous Ovarian Cancer (HGSOC), accounts for 80 per cent of ovarian cancer deaths in Canada. Surgery and chemotherapy can be effective, but ultimately three-quarters of women with HGSOC will see their disease return. To deliver better outcomes for patients, OICR has launched a new ‘all star team’ of ovarian cancer researchers.

Continue reading – Ovarian cancer research team working to exploit disease’s vulnerabilities

July 11, 2017

How OICR is helping to boost the body’s ability to fight cancer

Oncology Viruses - Image of a cell.

The body’s immune system is incredibly powerful. Its ability to detect and destroy various pathogens makes it central to maintaining good health. While we all know the role it plays in fighting the common cold or flu, many do not know that it has recently been enlisted by scientists in the fight against cancer. Researchers in a field known as immuno-oncology are working to find ways to turn on the body’s defences to locate and destroy tumour cells. OICR recently established a team of expert scientists and clinicians to develop and test new immunotherapies to help patients.

Continue reading – How OICR is helping to boost the body’s ability to fight cancer

July 11, 2017

New research group aims to exploit genomic differences within brain cancer to develop new treatments

Drs. Taylor and Dirks

This year, almost 3,000 Canadians will be diagnosed with brain cancer – one of the hardest forms of cancer to treat. In May, OICR launched its Brain Cancer Translational Research Initiative (TRI) to leverage recent insights into the genomic heterogeneity in two common types of brain cancer – Medulloblastoma (MB) and Glioblastoma Multiforme (GBM). Developing a better understanding of the genes and pathways central to MB and GBM will enable the development of new drugs and provide a much needed improvement in treatment options for patients, many of whom are children and young adults and are particularly susceptible to long-term side effects from treatment.

Continue reading – New research group aims to exploit genomic differences within brain cancer to develop new treatments

Next Page »