March 9, 2021

OICR research team awarded $2.4 million to facilitate precision medicine for early-stage breast cancer

Partnership between Thermo-Fisher Scientific and OICR Diagnostic Development, led by Dr. John Bartlett, awarded support from Genome Canada’s Genomic Applications Partnership Program

The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, has announced $8.6 million in federal support through Ontario Genomics via Genome Canada’s Genomic Applications Partnership Program (GAPP) to five applied genomics research projects that will improve the well-being of Canadians. As one of the five recipients, OICR’s Diagnostic Development program will receive $2.4 million to develop an epigenomic profiling tool to better understand the progression of breast cancer.

Working with Thermo Fisher Scientific, OICR’s Drs. John Bartlett, Jane Bayani, Melanie Spears and collaborators will investigate the effects of differences in ethnicity on breast cancer treatment and survivorship. Their ultimate goal is to make the delivery of targeted breast cancer treatment more equitable for Black and Asian women.

From left to right: Melanie Spears, John Bartlett, Dan Dion, Jeff Smith, Elaine Wong-Ho, Seth Sadis and Jane Bayani.

“Moving forward we want to understand how the complex relationship between biology and ethnicity can accelerate the delivery of the best treatments to patients, treating everyone as an individual based on the biology of their disease,” says Dr. John Bartlett, Director, Diagnostic Development, OICR.

Breast cancer, which was once considered a homogeneous disease, is now understood to be a variety of different types of cancer that require different types of treatment. Understanding the DNA changes that lead to breast cancer and the downstream effects of DNA changes on the cellular machinery – such as the epigenomics of the disease – helps us match the best treatment for each patient. Through this project, Bartlett, Bayani, Spears and collaborators will develop and validate new and improved tests to subtype and predict the severity of breast cancers. They will focus on comparing results between cancers in Black and Asian minority ethnic groups and other ethnic groups.

“We’re thrilled to continue working with Thermo Fisher to examine the role of ethnicity and develop new tools in the diagnosis of breast cancer,” says Dr. Melanie Spears, Principal Research Scientist, Diagnostic Development.

Genome Canada’s GAPP funds translational research and development projects that address real-world challenges and opportunities identified by industry, government, not-for-profits, and other receptors of genomics knowledge and technology. These targeted investments support outcome-oriented partnerships across sectors to generate Canadian-led solutions.

“This grant will give us the opportunity to bring additional precision medicine tests for breast cancer patients and examine the impact ethnicity has in the biology of these cancers,” says Bayani, co-lead investigator and Principal Research Scientist at OICR. “We’re excited to work with our industry partner and collaborators in moving personalize medicine forward,” says Dr. Jane Bayani, Principal Research Scientist, Diagnostic Development.

“Investing in genomics research with a line of sight to application is critical for the health and well-being of Canadians,” said Dr. Rob Annan, President and CEO of Genome Canada.  “Genome Canada is proud to work with the Government of Canada to fuel demand-driven genomics research and innovation collaborations among academic, industry, health-care and other partners to shape a better, healthier future for Canadians.”

Learn more about this project: Development of an Epigenomic Profiling Tool to Facilitate Precision Medicine in Early Breast Cancer.

December 5, 2019

Bridging the GAPP: Bringing new diagnostic tests to patients

Dr. Jane Bayani discusses how OICR is partnering with Thermo Fisher Scientific to bring new diagnostic tests from the lab into the clinic and how Genome Canada’s Genomic Applications Partnership Program (GAPP) is making that possible.

July 30, 2019

Canadian Government-Sponsored Collaboration Targets Standardized Cancer Testing

Genome Canada, Ontario Institute for Cancer Research and Thermo Fisher Scientific to focus on pancreatic, prostate and breast cancer

CARLSBAD, Calif. – (July 30, 2019)Genome Canada, the Ontario Institute for Cancer Research (OICR) and Thermo Fisher Scientific are collaborating to develop a complete solution of targeted next generation sequencing (NGS) assays and analysis software designed to more effectively assess – and eventually improve management of – pancreatic, prostate and breast cancer.  

The $6 million, three-year initiative aims to standardize advanced molecular profiling in these disease areas and make the assays commercially available globally. Focusing on rapid genomic diagnostics in pancreatic cancer and targeting treatment in breast and prostate cancers, the partnership builds on previous clinical research between OICR and Thermo Fisher and will inform development of three assays that will be utilized to stratify patients in clinical trials in Ontario and other jurisdictions.

“By supporting research and clinical trials, Genome Canada is helping to put more of Ontario’s innovative cancer diagnostics research into clinical use,” said Dr. John Bartlett, program director, diagnostic development at OICR. “This project has the potential to springboard advanced next-generation sequencing to routine clinical use in Ontario and across Canada.”

Breast and prostate cancer are among the most common types of cancer in Canada, and the country’s five-year net survival rate for pancreatic cancer is only 8 percent. However, there is clear evidence that patient outcomes can be improved with NGS-based testing strategies. A recent U.S. health economics study has shown that advanced cancer patients who received treatment based on NGS testing results experienced double the length of progression-free survival without increasing health care costs.1

While some solutions analyze only DNA sequences, the new targeted NGS assays will provide comprehensive genomic profiles by simultaneously assessing DNA and expression signatures from RNA to provide significantly more insight into driver mutations. The OICR/Thermo Fisher team will leverage this advantage by supplementing the new assays with unique DNA/RNA stratification biomarkers – specific to pancreatic, prostate and breast cancer – previously qualified by OICR translational researchers.

The collaboration is partly funded with a grant from Genome Canada through the Genomic Applications Partnership Program (GAPP). Genome Canada will contribute $2 million, the highest possible level of funding support, with the balance split between OICR and Thermo Fisher, which will cover development costs and validation activities.

Previous research collaborations led by OICR and Thermo Fisher are already well on their way to impacting cancer treatment in the future. Of particular note is a 2016 study designed to identify mutations and copy number variation changes in breast cancer, and clinical research utilizing the Oncomine Comprehensive Assay, which also supports both the National Cancer Institute’s Adult and Pediatric MATCH trials in the United States.

“OICR is a leader in clinical research, with extensive clinical trials in progress to improve care for patients with pancreatic, prostate and breast cancer,” said Jeff Smith, global lead of NGS precision medicine initiatives, clinical NGS and oncology for Thermo Fisher Scientific. “When OICR approached our team with the idea for this project, we saw it as another exciting for opportunity to bring Thermo Fisher’s proven Ion Torrent technology to clinical laboratories across Canada and to contribute to future improvement of patient care.”

1 “A Retrospective Analysis of Precision Medicine Outcomes in Patients With Advanced Cancer Reveals Improved Progression- Free Survival Without Increased Health Care Costs,” Journal of Oncology Practice, Vol 13, Issue 2, February 2017

August 17, 2016

Dr. John Bartlett discusses why new retrospective breast cancer study could lead to better diagnosis and treatment for patients

Fu Yan - In the lab.

OICR has announced a new retrospective study that will help to identify mutations for breast cancer, increasing understanding of the disease and potentially leading to better diagnosis in the future. The study is led by Dr. John Bartlett, Director of OICR’s Transformative Pathology Program and Dr. Harriet Feilotter, Department of Pathology and Molecular Medicine, Queen’s University. We spoke to Dr. Bartlett about why this study is important for the future of breast cancer diagnosis and treatment. 

Continue reading – Dr. John Bartlett discusses why new retrospective breast cancer study could lead to better diagnosis and treatment for patients

August 17, 2016

New retrospective study aims to identify mutations to better diagnose breast cancer in the future

Toronto (August 17, 2016) – Mr. Peter Goodhand, President of The Ontario Institute for Cancer Research (OICR), today announced a new collaborative research study in partnership with Thermo Fisher Scientific and Queen’s University to help bring more targeted diagnosis and treatment to breast cancer patients in the future.

Continue reading – New retrospective study aims to identify mutations to better diagnose breast cancer in the future