June 13, 2018

Viral protein identified as one of the main drivers of virus-induced stomach cancers

The Epstein Barr virus in false Colour

Some common pathogens, like the Epstein-Barr virus (EBV), can turn healthy cells into cancer cells, but it is not well understood how they do so. Better understanding how such pathogens work allows researchers to find new ways to target the pathogen’s disease-causing mechanisms and ultimately find new treatments for certain virus-induced cancers.

Dr. Ivan Borozan, from Dr. Vincent Ferretti’s Lab at OICR, and Prof. Lori Frappier at the University of Toronto are working together to better understand EBV and how it triggers the transformation of normal cells to cancerous cells, also known as oncogenesis. Together, they have identified that a key protein expressed by EBV, BKRF4, is one of the likely drivers behind EBV-induced stomach cancers.

Continue reading – Viral protein identified as one of the main drivers of virus-induced stomach cancers

December 7, 2017

Finding new ways to prevent virus-induced stomach cancers

An illustration of the Epstein-Barr virus

The link between some viruses and cancer has long been established. Now, researchers like OICR’s Dr. Ivan Borozan are using genomic sequencing to analyze common viruses like Epstein-Barr (also called human herpes virus 4). This knowledge could ultimately be used to develop new therapeutic vaccines to keep these viruses from taking hold in the body and prevent associated cancers from ever developing in the first place.

Continue reading – Finding new ways to prevent virus-induced stomach cancers

February 23, 2017

New Gene Sequencing Software Could Aid in Early Detection, Treatment of Cancer

A closeup of the nanopore sequencing device

Digital Detection Tool Will Be Shared Freely Over the Web

Toronto, ON and Baltimore, MD (February 23, 2017) A research team from the United States and Canada has developed and successfully tested new computational software that determines whether a human DNA sample includes an epigenetic add-on linked to cancer and other adverse health conditions.

Continue reading – New Gene Sequencing Software Could Aid in Early Detection, Treatment of Cancer

January 13, 2017

Decoding the beaver genome

Jared Simpson

What does a beaver’s genome look like? And how can understanding the beaver genome help us to improve human health? A group of Canadian researchers led by Drs. Stephen Scherer and Si Lok at The Centre for Applied Genomics and The Hospital for Sick Children today published the sequenced genome of the Canadian beaver in order to answer these questions and others (and just in time for Canada’s 150th anniversary, no less).

Dr. Jared Simpson led a team at OICR who provided their bioinformatics expertise on the project. We spoke to Simpson about his team’s role in the study and how their findings could contribute to a better understanding of cancer.

Continue reading – Decoding the beaver genome

June 16, 2016

OICR-developed software helping track Zika in Brazil

Field Laboratory tracking Zika
Photo: University of Birmingham

Scientists from the University of Birmingham in the U.K. have established a mobile DNA sequencing lab in Brazil to help that country track the spread of the Zika virus. The lab, based inside a minibus, is travelling through the areas of Brazil that have been most affected. A central part of the technology they are using is the small, USB-powered MinION genome sequencer. OICR’s Dr. Jared Simpson, an Investigator in the Informatics and Bio-computing Program, developed the software used to sequence samples on the device.

Read the news release: Mobile laboratories help track Zika spread across Brazil

Related: Tracking Ebola with portable sequencers: Could this technology be the key monitoring the spread of Zika?