July 23, 2019

Blood samples, biostatistics and a fresh perspective: The makings of a cancer prediction machine

Jordyn Walton and David Soave
Jordyn Walton and Dr. David Soave

Biostatistics Training Initiative (BTI) alumnus brings on new BTI trainee to study Canada’s largest population health dataset using today’s top technologies

Recently, circulating tumour DNA (ctDNA) – DNA released from cancer cells that freely circulates in the blood – has garnered much attention not only as an alternative to traditional tissue biopsies, but as a potential blood-based biomarker for early cancer diagnosis.

The ability to detect the earliest blood-borne traces of cancer largely rests in our ability to determine which molecular markers indicate that a cancer is developing – or which patterns in ctDNA can predict whether a cancer will grow. Dr. David Soave sees this as a mathematical challenge that, if solved, could have huge impact for better predicting and diagnosing a wide variety of cancers.

“To find cancer earlier or predict who will develop the disease, we need to carefully compare human samples from those who will develop cancer and samples from those who won’t,” Soave, an Assistant Professor at Wilfrid Laurier University and OICR Associate, says. “This type of challenge requires new statistical models, methods and computational techniques that can decipher large, complex and high-dimensional data.”

Last year, the Canadian Partnership for Tomorrow Project (CPTP) unified the data from several provincial longitudinal health studies into a national cohort consisting of more than 325,000 participants who are voluntarily donating their health and biologic samples to research. As some CPTP participants will develop disease and others will not, this dataset provides an unprecedented resource for researchers like Soave to discover the earliest traces of cancer that appear several months to years prior to an initial diagnosis.

Continue reading – Blood samples, biostatistics and a fresh perspective: The makings of a cancer prediction machine

August 7, 2018

Data integration for the future of precision oncology

CDIC Banner images

Big data are ushering in a new era of individualized cancer care and prevention, but not without conceptual and practical challenges. Canadian advances in genomics will be made by or limited by bioinformatics analytical capacity as well as the ability to store and analyze data in new and more sophisticated ways.

To help realize the potential of genomics research in cancer, the Canadian Data Integration Centre (CDIC) platform, led by OICR, offers third generation bioinformatics and genomics tools to support both functional and clinical genomics research. CDIC is the largest academic cancer informatics program in the country – offering customizable, client-oriented access services for data challenges across diverse research areas.

Continue reading – Data integration for the future of precision oncology

July 10, 2018

Researchers find early indicators of leukemia in genomes up to 10 years before symptoms surfaced

Immature blood cells in leukemia

Acute myeloid leukemia (AML) progresses quickly and requires treatment soon after diagnosis, but the disease begins long before becoming symptomatic. Early indicators of AML were thought to be indistinguishable from healthy aging. But now, an international group of researchers led in part by Dr. Sagi Abelson, a postdoctoral fellow in the lab of Dr. John Dick at the Princess Margaret Cancer Centre, has discovered distinctive traces of AML in patients up to 10 years before they were diagnosed with the disease.

Continue reading – Researchers find early indicators of leukemia in genomes up to 10 years before symptoms surfaced

June 19, 2018

More than 300,000 Canadians enrol in multi-decade research initiative to monitor disease trends

CPTP Leaders in OICR Data Centre

From left, Dr. John McLaughlin, executive director of CPTP, Cindy Morton, chief executive officer of the Canadian Partnership Against Cancer, and Dr. Philip Awadalla, national scientific director of CPTP

Over the past 10 years, more than 300,000 Canadians have volunteered to be part of the Canadian Partnership for Tomorrow Project (CPTP), a research platform that tracks the development of cancers and chronic diseases in the population over several decades to better understand risk factors.

Researchers from across Canada and the University of Toronto published a manuscript in the Canadian Medical Association Journal last week, marking a culmination of effort from hundreds of Canadian researchers to build the project with support from multiple national and provincial funders.

Continue reading – More than 300,000 Canadians enrol in multi-decade research initiative to monitor disease trends

March 29, 2018

Q and A with Dr. Philip Awadalla, Scientific Director of the Canadian Partnership for Tomorrow Project

Dr. Philip Awadalla poses for a photo in a hallway

Since 2008, the Canadian Partnership for Tomorrow Project (CPTP) has collected health data and biological samples from more than 300,000 volunteer participants across Canada. Now that its primary data collection phase has concluded, the Project is sharing this data with qualified researchers to help uncover the factors behind cancer and other diseases. It was recently announced that OICR’s Dr. Philip Awadalla will serve as the Project’s National Scientific Director and that OICR will host the Project’s national database and other scientific activities. We sat down with Awadalla to learn more about his vision for CPTP’s future. Continue reading – Q and A with Dr. Philip Awadalla, Scientific Director of the Canadian Partnership for Tomorrow Project

March 29, 2018

Canada’s largest health research platform teams up with University of Toronto to accelerate cancer and chronic disease research

The leaders of the CPTP stand in front of servers storing the Project's data.

Pictured (left to right): Dr. John Mc Laughlin, Executive Director of CPTP; Cindy Morton, Chief Executive Officer of the Canadian Partnership Against Cancer.; and Dr. Philip Awadalla, National Scientific Director of CPTP.

Canadian Partnership for Tomorrow Project (CPTP) enters a new era of scientific activity under the leadership of newly appointed National Scientific Director, Dr. Philip Awadalla

March 29, 2018 (Toronto) – The Canadian Partnership Against Cancer (“the Partnership”) today announced The University of Toronto’s Dalla Lana School of Public Health will be the new national scientific partner of the Canadian Partnership for Tomorrow Project (CPTP) – Canada’s national population cohort for precision health. This new scientific partner will enable a strong national scientific vision for CPTP and support leading-edge research on the possible causes of cancer and chronic diseases, leading to more made-in-Canada discoveries and breakthroughs. In addition, the University has announced that Ontario Institute for Cancer Research (OICR) will be its strategic partner to deliver the expertise and services needed to lead this key research platform.

Continue reading – Canada’s largest health research platform teams up with University of Toronto to accelerate cancer and chronic disease research

March 6, 2018

Study shows that environmental exposures such as air pollution are more determinant of respiratory health than inherited genetics

Toronto (March 6, 2018) – Researchers have found strong evidence that environmental exposures, including air pollution, affect gene expressions associated with respiratory diseases much more than genetic ancestry. The study, published today in Nature Communications, analyzed more than 1.6 million data points from biological specimens, health questionnaires and environmental datasets, making this study one of the largest ever to examine the relationship between gene expression and environmental stimuli. These findings represent a groundbreaking use of big data to uncover the environmental factors that are behind diseases and inform strategies for prevention, an approach that would apply to a number of diseases, including cancer.

Continue reading – Study shows that environmental exposures such as air pollution are more determinant of respiratory health than inherited genetics

January 25, 2018

The Canadian Data Integration Centre receives new funding to help cancer researchers translate findings to patients

CDI - LogoToronto (January 25, 2018) – The Canadian Data Integration Centre (CDIC) has received $6.4 million in funding from Genome Canada to help the research community translate the biological insights gained from genomics research into tangible improvements for cancer patients.

CDIC is a “one-stop shop” service delivery platform for cancer researchers, helping streamline research by providing coordinated expertise on a broad range of services, including data integration, genomics, pathology, biospecimen handling and advanced sequencing technologies. It is an international leader in genomics, bioinformatics and translational research, supporting some of the world’s largest programs in genomic data analysis, genomic and clinical data hosting, cancer data analyses and access, and the development of algorithms for advanced sequencing technology.

Continue reading – The Canadian Data Integration Centre receives new funding to help cancer researchers translate findings to patients

May 3, 2017

Study bringing more precision medicine to Ontario’s cancer patients

A technician holds a blood sample and writes down information.

The advent of genomic sequencing and targeted therapies has opened the door to new ways of diagnosing and treating cancer. The Ontario-wide Cancer Targeted Nucleic Acid Evaluation (OCTANE) program is a new, province-wide initiative supported by OICR that will allow more patients to benefit from these innovations while also helping to advance cancer research in Ontario.

Continue reading – Study bringing more precision medicine to Ontario’s cancer patients

January 17, 2017

First follow-up questionnaire to strengthen Ontario Health Study data

Illustration of four arms holding up surveys

For scientists working to understand diseases and develop new treatments, access to data is key. Ontario Health Study (OHS) participants have already provided the Study with a wealth of information about their health and lifestyle through the OHS online survey, and in some cases, blood samples and physical measures. Researchers can use this information to uncover the causes of various chronic diseases and to inform further research. Now, OHS participants are being given an opportunity to further help researchers by completing a follow-up questionnaire.

Continue reading – First follow-up questionnaire to strengthen Ontario Health Study data

May 13, 2016

OICR researcher receives $2 million in federal funding to study metabolic conditions that can lead to cancer

The OHS Team

Dr. Philip Awadalla and the Ontario Health Study team.

Chronic health conditions place a heavy burden on patients and their families, and cost the healthcare system and the Canadian economy staggering amounts. Chronic diseases were behind 67 per cent of total direct costs in health care and 60 per cent of total indirect costs as a result of early death, loss of productivity and foregone income, according to a 2006 study by the Public Health Agency of Canada. Globally, non-communicable disease (NCD) was made a priority by the World Health Organization, leading to the formation of the NCD Alliance and the Sharjah Declaration, which aims to reduce the global burden of NCDs.

Continue reading – OICR researcher receives $2 million in federal funding to study metabolic conditions that can lead to cancer

May 2, 2016

$2 million in new funding from Canadian Institutes of Health Research will help Ontario team study metabolic syndromes

Dr. Philip Awadalla

Dr. Philip Awadalla

Toronto (May 2, 2016) – Dr. Philip Awadalla, Senior Investigator at the Ontario Institute for Cancer Research and Principal Investigator for the Ontario Health Study has been awarded $2 million by the Canadian Institutes of Health Research (CIHR).  The award will fund the study of the role of both genes and the environment on the development of metabolic syndrome, a cluster of medical conditions that are common in aging adults, including obesity, hypertension, high cholesterol, high blood sugar and insulin resistance.

These conditions are considered to be both risk factors and causal factors in the development of cancer and chronic diseases like heart disease, stroke and diabetes. A better understanding of how to prevent and treat the conditions of metabolic syndrome could also help in the design of new strategies to prevent these diseases before they develop.

Continue reading – $2 million in new funding from Canadian Institutes of Health Research will help Ontario team study metabolic syndromes

Next Page »