August 13, 2019

How do cancer patients help future cancer patients? This is Ron’s story

The Canadian Cancer Clinical Trials Network launches new pilot project at Windsor Regional Hospital to help patients understand their treatment options and access current clinical studies

In early 2012, Ron Truant, the former Board Chair of Windsor Regional Hospital (WRH), became a patient when he was diagnosed with pancreatic cancer.

Facing a disease with a dismal prognosis, Ron and his wife, Noella Truant, made an appointment for a second opinion at a hospital outside of Windsor. It was there that the Truants learned about an open clinical trial and secured the study’s last available spot.

Noella says not everyone is as fortunate as they were.

“We were lucky to gain access to an immunotherapy trial, which – in combination with a new chemotherapy treatment – gave us another four years together,” says Noella. “Throughout his own treatment, Ron was always thinking about others and realized there were many others who weren’t as fortunate as we were to find a trial. He knew that trials are complex and not everyone can navigate them, so he saw an opportunity to help.”

Noella and Ron Truant

Last year, only eight per cent of cancer patients in Ontario were recruited to clinical trials and in community hospitals, like WRH, that number drops to fewer than two per cent. These statistics, Noella says, indicate that patients are missing opportunities to gain access to new treatment options and contribute to clinical research.

Currently, each cancer centre in Ontario has a clinical research team that recruits patients for available trials at their respective sites but patients, like Ron, often want to explore all treatment options, including those at other nearby hospitals. These patients and their care givers are frequently left to research trials on their own through websites that may not contain current information or online trial databases that may be difficult to navigate. Even if a patient finds an available trial, understanding eligibility criteria requires specialized knowledge and advanced medical literacy.

Ron, a long-standing advocate for the quality of patient care, teamed up with Dr. Caroline Hamm, an oncologist at the WRH, to develop a better way for patients to navigate clinical trials.

“We want to make sure patients are offered the best treatments available for their individual needs, and that requires more than a database of trials,” says Hamm, who is also the Director of the Windsor Cancer Research Group. “There are many considerations that a patient weighs when deciding to participate in a trial and we need a more considerate approach to help patients with these decisions.”

With support from the Canadian Cancer Clinical Trials Network (3CTN), Hamm and the Truants designed a program where a designated clinical trials specialist – a Clinical Trials Navigator – would help patients find and understand the trials available. A patient could refer themselves to the navigator or they could be referred to the navigator by their oncologist. After reviewing the patient’s case and considering their preferences, the navigator could then identify available trials for which the patient is likely eligible, and help facilitate the connection between a patient and the study team.

Hamm, in Ron Truant’s legacy, launched the Clinical Trials Navigator pilot project at WRH in January and so far the project has since helped more than 40 patients explore trial options.

The process by which the Clinical Trials Navigator project helps patients find clinical trials that may be of benefit.

Youshaa El-Abed, the project’s navigator, sees the impact of this initiative on patients and their care givers first-hand.

“When a patient comes to us, they’re looking for a trial,” says El-Abed. “But even if there are no trials available for them, the patient – and their loved ones – gain reassurance that they have explored their options.”

Due to growing demand for clinical trial navigation services at other hospitals, the project is now open to receive patient referrals from across Ontario.

Hamm, who has been recognized for her patient advocacy in Windsor, hopes to expand this initiative to new sites as she has in the past for a cancer drug access coordinator program. In addition to helping current patients with cancer, Hamm sees the Clinical Trials Navigator project as a way to accelerate clinical research so patients can benefit from research sooner.

“If we can help patients access trials, we can help trials reach their accrual targets sooner – a win-win for patients and for local clinical research,” says Hamm. “A health system with accelerated clinical research allows us to attract more study sponsors, bringing leading edge treatment options to our hospitals. Ron envisioned this solution and we’re proud it’s in action today.”

Read more about the Clinical Trials Navigator project on 3CTN’s website

July 30, 2019

Canadian Government-Sponsored Collaboration Targets Standardized Cancer Testing

Genome Canada, Ontario Institute for Cancer Research and Thermo Fisher Scientific to focus on pancreatic, prostate and breast cancer

CARLSBAD, Calif. – (July 30, 2019)Genome Canada, the Ontario Institute for Cancer Research (OICR) and Thermo Fisher Scientific are collaborating to develop a complete solution of targeted next generation sequencing (NGS) assays and analysis software designed to more effectively assess – and eventually improve management of – pancreatic, prostate and breast cancer.  

The $6 million, three-year initiative aims to standardize advanced molecular profiling in these disease areas and make the assays commercially available globally. Focusing on rapid genomic diagnostics in pancreatic cancer and targeting treatment in breast and prostate cancers, the partnership builds on previous clinical research between OICR and Thermo Fisher and will inform development of three assays that will be utilized to stratify patients in clinical trials in Ontario and other jurisdictions.

“By supporting research and clinical trials, Genome Canada is helping to put more of Ontario’s innovative cancer diagnostics research into clinical use,” said Dr. John Bartlett, program director, diagnostic development at OICR. “This project has the potential to springboard advanced next-generation sequencing to routine clinical use in Ontario and across Canada.”

Breast and prostate cancer are among the most common types of cancer in Canada, and the country’s five-year net survival rate for pancreatic cancer is only 8 percent. However, there is clear evidence that patient outcomes can be improved with NGS-based testing strategies. A recent U.S. health economics study has shown that advanced cancer patients who received treatment based on NGS testing results experienced double the length of progression-free survival without increasing health care costs.1

While some solutions analyze only DNA sequences, the new targeted NGS assays will provide comprehensive genomic profiles by simultaneously assessing DNA and expression signatures from RNA to provide significantly more insight into driver mutations. The OICR/Thermo Fisher team will leverage this advantage by supplementing the new assays with unique DNA/RNA stratification biomarkers – specific to pancreatic, prostate and breast cancer – previously qualified by OICR translational researchers.

The collaboration is partly funded with a grant from Genome Canada through the Genomic Applications Partnership Program (GAPP). Genome Canada will contribute $2 million, the highest possible level of funding support, with the balance split between OICR and Thermo Fisher, which will cover development costs and validation activities.

Previous research collaborations led by OICR and Thermo Fisher are already well on their way to impacting cancer treatment in the future. Of particular note is a 2016 study designed to identify mutations and copy number variation changes in breast cancer, and clinical research utilizing the Oncomine Comprehensive Assay, which also supports both the National Cancer Institute’s Adult and Pediatric MATCH trials in the United States.

“OICR is a leader in clinical research, with extensive clinical trials in progress to improve care for patients with pancreatic, prostate and breast cancer,” said Jeff Smith, global lead of NGS precision medicine initiatives, clinical NGS and oncology for Thermo Fisher Scientific. “When OICR approached our team with the idea for this project, we saw it as another exciting for opportunity to bring Thermo Fisher’s proven Ion Torrent technology to clinical laboratories across Canada and to contribute to future improvement of patient care.”

1 “A Retrospective Analysis of Precision Medicine Outcomes in Patients With Advanced Cancer Reveals Improved Progression- Free Survival Without Increased Health Care Costs,” Journal of Oncology Practice, Vol 13, Issue 2, February 2017

June 26, 2019

Patterns in pancreatic cancer samples lead to better prognostic power

Dr. Sangeetha Kalimuthu, gastrointestinal pathologist at the University Health Network, works in her lab.
Dr. Sangeetha N Kalimuthu, gastrointestinal pathologist at the University Health Network, works in her lab. (Photo: UHN)

University Health Network pathologist teams up with OICR researchers to develop an improved pancreatic cancer classification test that can better predict the severity of the disease

Under a microscope, pancreatic cancer often looks like a haphazard collection of cells with various shapes and sizes, but Dr. Sangeetha N Kalimuthu saw something different.

She had been analyzing hundreds of pancreas resections, which are classified using the current three-tiered staging system – well, moderate and poor – but found that the vast majority of cases fell into the moderate category, offering little information to physicians about how best to treat these patients.

N Kalimuthu, a gastrointestinal pathologist at the University Health Network (UHN), noticed that certain patterns in cell shape matched the molecular profile of tumours with poorer survival for patients. She teamed up with Drs. Runjan Chetty and Steven Gallinger at UHN to see if what she noticed was true. Gallinger is Director of OICR’s PanCuRx Translational Research Initiative.

In a study recently published in Gut BMJ, the study group assessed more than 800 pancreatic ductal adenocarcinoma (PDAC) slides and developed an improved classification method that could help differentiate patients with the most aggressive tumours.

“Our aim was to revise and reappraise the current grading system to find features that correlated with these molecular subtypes,” says N Kalimuthu. 

By linking molecular profiles of tumours with their appearance, N Kalimuthu was able to develop a classification method that can be easily integrated into current pathology laboratories.

“Any pathologist in any part of the world can do this,” says N Kalimuthu. “It’s the bread and butter of what pathologists do. It’s fast, cheap and accessible.”

N Kalimuthu also says that this method can be augmented using deep learning methods to reduce turn-around times and variability from one pathology laboratory to another.

“Pathologists have had a long, rich history in their vital roles to diagnose and stage pancreas cancer,” says Gallinger, who is co-author of the publication. “This study is an elegant demonstration of the potential of personalized medicine, with the promise of improved outcomes for our patients.”

Read the full UHN News story here.

May 30, 2019

Predicting the course of pancreatic cancer

Dr. Benjamin Haibe-Kains, Senior Scientist at the Princess Margaret Cancer Centre and OICR Associate poses for a photo in a data centre.
Dr. Benjamin Haibe-Kains, Senior Scientist at the Princess Margaret Cancer Centre and OICR Associate.

Meta-analysis of 1,200 patients with pancreatic cancer reveals a new way to identify those with very aggressive tumours who may benefit from alternate treatment approaches

Only half of pancreatic cancer patients who undergo standard chemotherapy and surgery live a year after their initial diagnosis. In the face of these dismal statistics, patients are faced with the challenge of deciding whether they want to proceed with treatment that may have unpleasant side effects. If clinicians could identify patients who would not benefit from standard therapies, they could help these patients make more informed treatment decisions or recommend alternative palliative treatment approaches.

As part of OICR’s Pancreatic Cancer Translational Research Initiative (PanCuRx) team led by Dr. Steven Gallinger, Dr. Benjamin Haibe-Kains recognized that computational modeling can be used to help inform these decisions, but to design a robust predictive model he would need much more data than any individual study had ever collected.

Building the data foundations

Haibe-Kains, who is a Senior Scientist at the Princess Margaret Cancer Centre and OICR Associate, began his investigation with a dataset from PanCuRx – the largest collection of genomic and transcriptomic data on primary and metastatic pancreatic tumours to date. He and his lab then incorporated an additional 1,000 cases of pancreatic tumours from studies around the world that had collected both patient samples and information about how each patient responded to treatment.

“The datasets that we aggregated were a mixed bag of different types of data collected through different profiling platforms by different institutions,” says Haibe-Kains. “We took on the challenge of harmonizing the heterogeneity of these resources which nobody else had done.”

Previously, the Haibe-Kains Lab developed a computational method that could make incompatible transcriptomic data compatible. They had used this method to find four new breast cancer biomarkers to predict treatment response and they recognized that they could apply similar methods to harmonize pancreatic cancer data as well.

The dataset resulting from the harmonization is now the largest pancreatic cancer dataset, and Haibe-Kains has made it freely available for other researchers to use and study through the MetaGxPancreas package.

Making a predictive model

Haibe-Kains and his team set out to develop a computational model that could predict if a patient would survive for a year after their biopsy. They used machine learning techniques to exploit their rich dataset, find common patterns in the genomic data of aggressive tumours, and developed PCOSP – the Pancreatic Cancer Overall Survival Predictor.

“Our approach was to look at how one gene was expressed relative to another and relate that to how long a patient lived after biopsy,” says Haibe-Kains. “That may sound simple, but that means dealing with nearly 200 million pairs of genes, which is a significant amount of data to compute.”

As recently described in JCO Clinical Cancer Informatics, the group refined PCOSP using ensemble learning – the combination of several machine learning techniques to improve a model’s accuracy of predictions.

“PCOSP is actually a combination of hundreds of models and not just one,” says Haibe-Kains. “We tested about a thousand models, selected the models that could predict early death very well and combined them to make a stronger classifier.”

Using prediction to power patient decisions

Haibe-Kains says that as the infrastructure for routine sequencing progresses, PCOSP can be translated into clinical practice to help clinicians determine which patients would not benefit from standard treatment and which may benefit from alternative treatment approaches.

“Pancreatic cancer is a challenging disease but if we can predict the course of the disease, we can give clinicians and patients more information. With that information, they can make more personalized decisions to improve their treatment and ideally, their lives.”

Read more about PanCuRx on OICR News.

January 25, 2019

Study reveals mechanism driving spread of advanced pancreatic cancer

Rob Denroche, bioinformatician and Project Leader of PanCuRx.

Large-scale pancreatic cancer study distinguishes primary from metastatic tumours, uncovering new genomic biomarkers that could help guide treatment selection

Over the next decade, pancreatic ductal adenocarcinoma (PDAC) – the most common type of pancreatic cancer – is projected to become the second leading cause of all cancer mortality. A better understanding of how PDAC changes when it metastasizes – or spreads from the pancreas to other organs – may help researchers find ways to treat the disease more effectively.

A study by OICR researchers and collaborators, published today in Cancer Cell, showed that the cells in advanced pancreatic tumours grow – or cycle – faster than those in early tumours, revealing one of the key reasons that the disease can advance so quickly.  OICR’s Pancreatic Cancer Translational Research Initiative, PanCuRx, investigated the whole genomes and transcriptomes of more than 300 PDAC tumours, contrasting cells from primary tumours and cells from metastatic tumours. This distinction may help clinicians advise patients about treatment, whether it be surgery, chemotherapy or radiation.

“Often, a patient’s primary pancreatic cancer recurs after surgery and chemotherapy, and there is limited knowledge of metastases to guide the next course of action. In less common ‘metachronous’ cases, treatment depends on whether the second tumour is new, or if it grew from remnants of a previous tumour,” says Dr. Ashton Connor, chief resident in the General Surgery training program at the University of Toronto and lead author of the study. “In this study, we explored differences between primary and metastatic tumours in the hopes of better understanding the mechanisms of cancer cell spread from the pancreas, and to ultimately inform their treatment.”

Over the last decade, PanCuRx has assembled the largest collection of genomic and transcriptomic data on primary and metastatic PDAC tumours. The initiative continues to collect samples through the COMPASS clinical trial today.

“There have been very few studies of advanced PDAC, so our rich dataset is very valuable to the future of pancreatic cancer research,” says Rob Denroche, bioinformatician, Project Leader of PanCuRx and co-author of the study. “Research groups from Germany, Brazil, Japan and across North America have been interested in the data that we’ve collected and we’re happy to enable their discoveries.”

PanCuRx collaborations span four continents, largely due to their enriched dataset on metastatic PDAC.

Through COMPASS, PanCuRx will continue to build on these findings and test if cell progression could be used to inform treatment selection in the clinic.

“This work is foundational to our understanding of advanced pancreatic cancer,” says Dr. Steven Gallinger, PanCuRx Director and Head of the Hepatobiliary/Pancreatic Surgical Oncology Program at UHN and Mount Sinai Hospital. “We look forward to building on this understanding to better inform treatment selection for those with this terrible disease.”

March 6, 2018

Canadian pancreatic cancer research team provides personalized medicine, new hope to patients

VANCOUVER – Canadian pancreatic cancer researchers are joining forces under a Terry Fox initiative bringing new hope for patients with this deadly disease.

“For many years it’s been hopeless from a patient perspective, and we are hoping to help shift this,” says Dr. Daniel Renouf (BC Cancer, University of British Columbia) who, along with Dr. David Schaeffer (UBC, Vancouver General Hospital), is leading a $5-million pan-Canadian, precision medicine initiative recently funded by the Terry Fox Research Institute.

A lack of early detection tests. Few known symptoms. Very limited treatment options. No known biomarkers that can be used to direct therapy.  These are among the clinical challenges team EPPIC, short for Enhanced Pancreatic Cancer Profiling for Individualized Care, is tackling over the next five years to improve personalized treatments for patients with pancreatic ductal adenocarcinoma (PDAC), a disease with just a nine per cent five-year survival rate.

Continue reading – Canadian pancreatic cancer research team provides personalized medicine, new hope to patients

January 30, 2018

Early results from COMPASS trial demonstrate benefits of using genomic sequencing to guide treatment for pancreatic cancer

Pancreatic Cancer and compass icon

Genomic profiling has allowed physicians to customize treatments for patients with many types of cancer, but bringing this technology to bear against advanced pancreatic cancer has proven to be extremely difficult. OICR’s pancreatic cancer Translational Research Initiative, called PanCuRx, has been conducting a first-of-its-kind clinical trial called COMPASS to evaluate the feasibility of using real time genomic sequencing in pancreatic cancer care. The research team recently reported early results from the trial, which show how they overcame the challenges of genomic profiling specific to pancreatic cancer and gained new insights about the disease.

PanCuRx is focused on improving treatment for pancreatic adenocarcinoma (PDAC), the most common form of pancreatic cancer and the fourth leading cause of cancer death in Canada. The group’s approach centres around understanding the genetics and biology of PDAC to inform the selection of therapies, as well as the development of new treatments.

Continue reading – Early results from COMPASS trial demonstrate benefits of using genomic sequencing to guide treatment for pancreatic cancer

May 25, 2017

OICR launches five all-star teams of Ontario scientists to tackle some of the deadliest forms of cancer

People from the press conference

Great strides have been made in cancer research, but much work remains to develop better treatments for the most lethal cancers and to advance new anti-cancer technologies. OICR is taking on a new approach, building on the success of the Institute’s first ten years and Ontario’s strength in particular cancer research areas. Reza Moridi, Ontario’s Minister of Research, Innovation and Science announced that the Institute is funding five collaborative, cross-disciplinary and inter-institutional Translational Research Initiatives (TRIs) with a total of $24 million over the next two years.

The TRIs will bring together some of the top cancer researchers in Ontario and be led by internationally renowned Ontario scientists. Each team will focus on a certain type of cancer or therapeutic technology. To maximize the positive impact of research on patients, the TRIs all incorporate clinical trials into their design. The TRIs, which were selected by an International Scientific Review Panel, are:

The funding will also support Early Prostate Cancer Developmental Projects led by Drs. Paul Boutros and George Rodriguez.

“In just over 10 years, the Ontario Institute for Cancer Research has become a global centre of excellence that is moving the province to the forefront of discovery and innovation in cancer research. It is home to outstanding Ontario scientists, who are working together to ease the burden of cancer in our province and around the world,” said Moridi.

“Collaboration and translational research are key to seeing that the innovative technologies being developed in Ontario reach the clinic and help patients,” said Mr. Peter Goodhand, President of OICR. “These TRIs represent a unique and significant opportunity to impact clinical cancer care in the province.”

Read the news release: OICR launches five large-scale Ontario research initiatives to combat some of the most deadly cancers

May 25, 2017

OICR launches five large-scale Ontario research initiatives to combat some of the most deadly cancers

Minister for Research, Innovation and Science

Toronto (May 25, 2017) – Reza Moridi, Ontario’s Minister of Research, Innovation and Science, today announced the Ontario Institute for Cancer Research is launching five unique, cross-disciplinary, multi-institutional Translational Research Initiatives (TRIs), each focused on a single type of or treatment approach to cancer. With $24 million in funding over two years, the TRIs will bring together world-leading scientists to tackle some of the most difficult to treat cancers and test innovative solutions to some of the most serious challenges in cancer today.

The TRIs build on Ontario’s proven strengths in areas such as stem cells, immuno-oncology, pediatric cancers, genomics, clinical trials and informatics. Working together, the province’s top scientists and clinicians will accelerate the development of much needed solutions for patients around the globe, with a focus on acute leukemia and brain, ovarian and pancreatic cancers. Each TRI includes clinical trials to maximize patient impact.

Continue reading – OICR launches five large-scale Ontario research initiatives to combat some of the most deadly cancers

October 21, 2016

OICR-led study finds four unique genomic signatures in pancreas cancer, uncovers potential of immunotherapies

The pancreas cancer puzzle

Pancreas cancer is one of the most aggressive and deadly forms of the disease. According to the Canadian Cancer Society, only 8 percent of pancreas cancer patients survive more than five years after diagnosis. OICR’s PanCuRx Translational Research Initiative has recently published the results of an international collaboration that increases understanding of this complex disease and how to treat it based on a patient’s unique profile.

Continue reading – OICR-led study finds four unique genomic signatures in pancreas cancer, uncovers potential of immunotherapies

October 12, 2016

New findings challenge current view of how pancreas cancer develops

Dr. Faiyaz Notta and Dr. Steven Gallinger

The findings provide important insights into how pancreas cancer develops and spreads and new strategies for better understanding one of the mostly deadly types of cancer.

Toronto (October 12, 2016) – Researchers in the multidisciplinary PanCuRx research initiative at the Ontario Institute for Cancer Research (OICR) and University Health Network’s Princess Margaret Cancer Centre, led by Dr. Faiyaz Notta and Dr. Steven Gallinger, today published new findings that challenge current beliefs about how and why pancreas cancer is so aggressive.

Continue reading – New findings challenge current view of how pancreas cancer develops

June 1, 2015

The Ontario Institute for Cancer Research invests $4.6 million to support pancreatic cancer research

TORONTO, ON (June 1, 2015) – Dr. Tom Hudson, President and Scientific Director of the Ontario Institute for Cancer Research (OICR) today announced OICR is investing $4.6 million over two years in PanCuRx, an initiative that seeks solutions to the high fatality rate of pancreatic cancer. The multidisciplinary program brings together researchers from the fields of genomics, pathology, cancer biology and informatics, as well as clinician scientists, who will collaboratively work to better understand pancreatic cancer on a molecular level and use this understanding to develop better, more personalized diagnostics and therapies for patients. The research will focus on pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer.

“There have been huge scientific advances over the past few decades on many types of cancer, but statistics on pancreatic cancer have remained largely unchanged,” said Dr. Tom Hudson, President and Scientific Director of OICR. “OICR is proud today to announce support for PanCuRx and help to improve these statistics and bring new solutions to patients.”

Initial funding for the initiative was provided last spring by Sylvia M. G. Soyka, director, and the Board of Trustees of the SMGS Family Foundation to the Canadian Friends of the Hebrew University (CFHU). The focus of this funding is to find and identify the molecular drivers behind metastatic pancreatic cancer. Researchers at the Institute for Medical Research Israel-Canada (IMRIC) at the Hebrew University of Jerusalem and Sheba Medical Center in Israel and at OICR in Toronto are currently working collaboratively to achieve this goal.

“This new funding will help tackle one of the least understood types of cancer. Ontario’s innovative and collaborative research community, together with our partners in Israel, are well suited for this challenge to discover new solutions and treatments that will benefit patients worldwide,” said Reza Moridi, Ontario Minister of Research and Innovation.

PanCuRx’s unique, collaborative design will allow teams of researchers to pursue research and clinical questions in parallel, with a tight link between clinical practice and lab research. The research will also be highly integrated with the Princess Margaret Cancer Centre’s translational PDAC program, ensuring that in addition to increasing understanding of the disease more generally, the research will directly inform the treatment strategy of patients who participate.

“The focus of PanCuRx is to ensure we bring the patients closer to the research and the research closer to the patients,” said Dr. Steven Gallinger, Surgical Oncologist and Head, Hepatobiliary/Pancreatic Surgical Oncology Program at University Health Network, Senior Investigator, Samuel Lunenfeld Research Institute of Mount Sinai Hospital and leader of the PanCuRx initiative. “By working together among disciplines and between the research and clinical components we feel much more can be accomplished and we have a real chance of making an impact on improving outcomes for PDAC patients.”

“I am alive today because of the groundbreaking treatment I received from Dr. Gallinger, Dr. Malcolm Moore and their team,” said Libby Znaimer, a prominent Canadian journalist and pancreatic cancer survivor. Znaimer received therapy targeted at the molecular level to the specific subtype of pancreatic cancer she was diagnosed with, an avenue of diagnosis and treatment that this new funding will further explore. “This summer I will celebrate seven years since diagnosis. We need more research to ensure that outcomes like mine become the norm, rather than a rare exception.”

Pancreatic ductal adenocarcinoma (PDAC) makes up approximately 85 per cent of pancreatic cancer cases. In 2014, an estimated 4,700 Canadians were diagnosed with PDAC and 4,400 died from the disease. It is the fourth leading cause of cancer death in Canada and the current five-year survival rate of 7.7 per cent is the lowest of all cancers. While the number of people dying from common cancers such as breast and colon cancer has dropped dramatically over the past 30 years, there have been only slight improvements for PDAC. It is estimated that PDAC will be the second leading cause of cancer death in North America within 10 years.