September 10, 2020

Deploying liquid biopsies to improve cancer screening and care during COVID-19

OICR-supported researcher Dr. Harriet Feilotter leads liquid biopsy research program

Dr. Harriet Feilotter, Molecular Geneticist and Scientist at Kingston Health Sciences Centre, faculty member of Queen’s Cancer Research Institute and OICR Associate.

Adapted from Canexia Health’s news release and Patriot One Technologies’ news release.

As the COVID-19 pandemic has impacted many areas of life, including the diagnosis and treatment of other health conditions, people have chosen to forgo cancer screening and care in attempt to minimize their potential exposure to the virus. Relative to the general population, people living with cancer are more susceptible to the virus, but delaying cancer treatment may allow the disease to grow or spread.

Dr. Harriet Feilotter has teamed up with members of the pan-Canadian Digital Technology Supercluster to bring greater access to cancer testing and treatment during the pandemic and beyond. Through the $2.59 million Project ACTT (Access to Cancer Testing & Treatment in Response to COVID-19), they aim to provide liquid biopsy solutions, which require only a simple blood draw, as alternatives to surgical tissue biopsies for cancer diagnosis and care.

“The goal is to allow patients alternatives to invasive procedures that may be difficult to access during a pandemic,” says Feilotter, Molecular Geneticist and Scientist at Kingston Health Sciences Centre, faculty member of Queen’s Cancer Research Institute and OICR Associate. “Not only would this benefit those patients who live far from large cancer centres, but it could limit patient exposure to COVID-19 and increase health system capacity.”

The collaborative team is led in part by Canexia Health, which develops specialized cancer genomic assays, and Patriot One Technologies Inc.’s subsidiary Xtract AI, which specializes in machine learning solutions across a variety of applications, among other private and public partners. Together, they will work to enhance their current tests that detect mutations in circulating tumour DNA (ctDNA) from blood and deploy these tests for multiple cancer types across Canada.

Now through ACTT, some patients have access to these tests in British Columbia, Ontario, Quebec and Saskatchewan. The long-term objective is to increase access across the country.

“The development of liquid biopsies and ctDNA testing has been accelerated by this pandemic,” says Feilotter. “We’re proud to team up in this cross-disciplinary, cross-sector collaboration to bring these promising solutions to more patients.”

Read Canexia Health’s news release or Patriot One Technologies’ news release

August 28, 2020

Tumour traces in blood could predict which cancer patients will benefit from immunotherapy

OICR-supported researchers and collaborators discover indicators in the blood that may predict which patients will respond to the immunotherapy drug, pembrolizumab

Dr. Scott Bratman, Cindy Yang, Dr. Lillian Siu, Dr. Trevor Pugh

Adapted from UHN’s Media Release.

Immunotherapy can shrink tumours and prolong survival for certain cancer patients, but clinicians don’t yet know which patients will benefit from these treatments. OICR-supported researchers and collaborators at the Princess Margaret Cancer Centre have made a discovery that could help identify those patients who may benefit and match them with potentially life-saving therapies.

In their study, recently published in Nature Cancer, the research group found that the changing levels of tumour fragments, or circulating tumour DNA (ctDNA), in a patient’s blood can be used to predict whether they will respond to the immunotherapy drug pembrolizumab.

The study lays the foundation for researchers to develop an easy, non-invasive and quick blood test to determine who will benefit from the drug and how well their disease is responding to treatment.

“While we have known for some time that cancer disease burden can be monitored by measuring tumour DNA in the blood, we are excited to report that the same concept can be applied to track the progress of patients being treated with pembrolizumab,” says co-first author Cindy Yang, PhD Candidate in Dr. Trevor Pugh’s lab at the Princess Margaret Cancer Centre and OICR. “This will hopefully provide a new tool to more accurately detect response and progression in patients undergoing immune checkpoint inhibitor therapy. By detecting progression early, patients may have the opportunity to undergo subsequent lines of treatment in a timely fashion.”

The benefits of blood tests

Conventionally, imaging scans – such as computerized tomography (CT) scans – and other methods are used to monitor a patient’s cancer. This study suggests a simple and quicker blood test as an alternative to these scans.

“Although important, computerized tomography (CT) and other scans alone will not tell us what we need to know quickly or accurately enough,” says senior author Dr. Lillian Siu, Senior Scientist and medical oncologist at the Princess Margaret Cancer Centre.

Dr. Scott Bratman, radiation oncologist and Senior Scientist at the Princess Margaret Cancer Centre and co-first author of the study, points out that it may take many months to detect whether a tumour is shrinking with various imaging scans. 

“New next-generation sequencing technologies can detect and measure these tiny bits of cellular debris floating in the blood stream accurately and sensitively, allowing us to pinpoint quite quickly whether the cancer is active.”

This study represents one of the many emerging applications of using ctDNA to guide treatment decisions. It is one of the first to show that measuring ctDNA could be useful as a predictor of who responds well to immunotherapy across a broad spectrum of cancer types. 

The prospective study analyzed the change in ctDNA from 74 patients, with different types of advanced cancers, being treated with pembrolizumab. Of the 74 patients, 33 had a decrease in ctDNA levels from their original baseline levels to week six to seven after treatment with the drug. These patients had better treatment responses and longer survival. Even more striking was that all 12 patients who had clearance of the ctDNA to undetectable levels during treatment were still alive at a median follow-up of 25 months.   

Conversely, a rise in ctDNA levels was linked to a rapid disease progression in most patients, and poorer survival.   

“Few studies have used a clinical biomarker across different types of cancers,” says Siu, who also co-leads OICR’s OCTANE trial. “The observation that ctDNA clearance during treatment and its link to long-term survival is novel and provocative, suggesting that this biological marker can have broad clinical impact.” 

Innovation and translation

This study is part of a larger flagship clinical trial, INSPIRE, which has enrolled more than 100 patients with head and neck, breast, ovarian, melanoma and other advanced solid tumours. INSPIRE brings together researchers from many disciplines to investigate the specific genomic and immune biomarkers in patients that may predict how patients will respond to pembrolizumab.

INSPIRE is made possible by collaborations across institutes and industries with expertise from those applying genomics to research and those applying genomics in the clinic.

“INSPIRE is an incredibly collaborative initiative that is a blend of big genomics – looking at large trends across many individuals – and highly-personalized genomics – looking at mutations within each patient sample,” says Pugh, co-senior author, Senior Scientist at Princess Margaret and Senior Investigator and Director of Genomics at OICR. “This is a modern approach to the translation of clinical genomics.”

“As a PhD student, this project gave me the unique opportunity to work in a highly collaborative intersection with industry, clinical, and academic partners,” says Yang. “It is very exciting to see translational research in action.”

Read the UHN Media Release.

June 23, 2020

Diagnosing brain tumours with a blood test

A blood test to diagnose and classify tumours could be revolutionary and practice-changing for patients and clinicians alike. In many cases, a simple blood sample could take the place of more invasive surgery to obtain tissue samples – resulting in better treatment planning and less anxiety for patients.

University Health Network’s (UHN) Drs. Daniel De Carvalho and Gelareh Zadeh collaborated to combine advanced technology with machine learning to develop a highly sensitive and accurate blood test to detect and classify brain cancers. Photo Credit: UHN

In an OICR-supported study recently published in Nature Medicine, researchers have shown that a simple but sensitive blood test can accurately diagnose and classify different types of brain tumours. With further research and development, the test could serve as a less-invasive method to detect, diagnose and classify the severity of brain tumours.

The study was also presented virtually on June 22 at the Opening Plenary Session of the American Association for Cancer Research Annual Meeting 2020: Turning Science into Lifesaving Care.

Continue reading – Diagnosing brain tumours with a blood test

November 14, 2018

Blood samples over biopsies: Developing a less invasive way to find and track cancers

A lab technician works to extract DNA from a sample in OICR's Genomics lab.

Researchers find a new way to detect small traces of tumour DNA in blood and determine the tumour’s tissue of origin

A blood sample can be used to detect and monitor certain cancers in select patients, but there are significant technical barriers that prevent the widespread adoption of this “liquid biopsy”. This type of blood test analyzes the rare traces of tumour DNA that are circulating in the blood, but distinguishing tumour DNA from healthy DNA is both difficult and expensive. New methods are needed to improve the accuracy, sensitivity and cost-effectiveness of liquid biopsies so that more patients can benefit from this less-invasive test.

Continue reading – Blood samples over biopsies: Developing a less invasive way to find and track cancers