January 4, 2021

Brain cancer linked to tissue healing, study finds

A brain scan showing a top down view of a cross-section with a glioblastoma tumour highlighted in red. (Hellerhoff, Wikimedia Commons)

Researchers discover brain cancer may develop when tissue healing runs amok, uncovering new approaches to combat the deadly disease

The healing process that follows a brain injury, such as an infection or a stroke, could spur tumour growth when the new cells generated are derailed by mutations, Toronto scientists have found. This discovery could lead to new therapy for glioblastoma patients who currently have limited treatment options with an average lifespan of 15 months after diagnosis.

The findings, published today in Nature Cancer, were made by an interdisciplinary team of researchers from OICR, the University of Toronto’s Donnelly Centre for Cellular and Biomolecular Research, The Hospital for Sick Children (SickKids) and the Princess Margaret Cancer Centre who are also on the pan-Canadian Stand Up to Cancer (SU2C) Canada Dream Team that focuses on a common brain cancer known as glioblastoma.

“Our data suggest that the right mutational change in particular cells in the brain could be modified by injury to give rise to a tumour,” says Dr. Peter Dirks, senior author of the study, OICR-supported researcher, Dream Team co-leader, and Head of the Division of Neurosurgery and a Senior Scientist in the Developmental and Stem Cell Biology program at SickKids. “We’re excited about what this tells us about how cancer originates and grows and it opens up entirely new ideas about treatment by focusing on the injury and inflammation response.”

The research group, led in part by OICR and Princess Margaret’s Dr. Trevor Pugh, applied the latest single-cell RNA sequencing and machine learning technologies to map the molecular make-up of the glioblastoma stem cells (GSCs), which Dirks’ team previously showed are responsible for tumour initiation and recurrence after treatment.

Equipped with these single-cell analysis methods, the research group was able to accurately differentiate and study different types of tumour cells. Through analyzing 26 tumours and nearly 70,000 cells, they found new subpopulations of GSCs that bear the molecular hallmarks of inflammation.

This finding suggests that some glioblastomas may start to form when the normal tissue healing process is derailed by mutations, possibly even many years before patients become symptomatic, Dirks says. Once a mutant cell becomes engaged in wound healing, it cannot stop multiplying because the normal controls are broken and this spurs tumour growth, according to the study.

The study’s authors, including co-leading researcher, Dr. Gary Bader from the Donnelly Centre as well as graduate students including Owen Whitley and Laura Richards, are now working to develop tailored therapies target these different molecular subgroups.

“There’s a real opportunity here for precision medicine.” says Pugh, who is Director of Genomics at OICR and the Princess Margaret Cancer Centre. “To dissect patients’ tumours at the single cell level and design a drug cocktail that can take out more than one cancer stem cell subclone at the same time.”

In addition to funding from the Stand Up To Cancer Canada Cancer Stem Cell Dream Team: Targeting Brain Tumour Stem Cell Epigenetic and Molecular Networks, the research was also funded by Genome Canada, the Canadian Institutes for Health Research, the Ontario Institute for Cancer Research, Terry Fox Research Institute, the Canadian Cancer Society and SickKids Foundation.

February 5, 2020

TrackSig: Unlocking the history of cancer

Yulia Rubanova
Yulia Rubanova

Toronto-based machine learning experts map the changes that lead to cancer, revealing opportunities for earlier diagnosis and new approaches to outmaneuver the disease

A tumour is often made up of different cells, some of which have changed – or evolved – over time and gained the ability to grow faster, survive longer and potentially avoid treatment. These cells, which have an ‘evolutionary advantage’, are thought to cause the vast majority of cancer deaths but researchers now have a new tool to tackle tumour evolution: TrackSig.

TrackSig – which was developed by Dr. Quaid Morris and his team at the University of Toronto, the Vector Institute and OICR – is a novel computational method that can map a cancer’s evolutionary history from a single patient sample and in turn help researchers thwart the disease’s next move.

“We combined sequencing with evolutionary theory and mathematical modeling to understand how cancers develop and adapt to resist treatment,” says Yulia Rubanova, PhD Candidate in the Morris Lab and lead author of the study. “This understanding lays the foundation for us to be able to predict – and impede – tumour evolution in future cancer patients.”

This understanding lays the foundation for us to be able to predict – and impede – tumour evolution in future cancer patients
– Yulia Rubanova

TrackSig was published today in Nature Communications alongside nearly two dozen other publications in Nature and its affiliated journals related to the Pan-Cancer Analysis of Whole Genomes Project, also known as the Pan-Cancer Project or PCAWG.

Previous tumour evolution studies focused on identifying the most frequent changes – or mutations – in a patient sample, where the most common mutations represent changes that came earlier in the tumour’s development and less common mutations represent more recent changes. Instead, Morris’ TrackSig charts different types of mutations over time, generating maps of a tumour’s evolutionary history in finer detail and with better accuracy than ever before.

This level of resolution enabled the discovery that many cancer-causing genetic changes occur long before the disease is diagnosed.

“For exceptional cases like in certain ovarian cancers, we were able to see these early events happening 10 to 20 years before the patient has any symptoms,” says Dr. Lincoln Stein, Head of Adaptive Oncology at OICR and member of the Pan-Cancer Project Steering Committee. “This opens up a much larger window of opportunity for earlier detection and treatment than we thought possible.”

The tools and findings from the Pan-Cancer Project are changing the way we think about cancer
Dr. Quaid Morris

With their new detailed maps of tumour evolution, the research group plans to further investigate novel cancer treatment strategies and design new therapies that can better anticipate, prevent and overcome evolution and drug resistance.

“The tools and findings from the Pan-Cancer Project are changing the way we think about cancer,” says Morris. “We’ve uncovered new opportunities to improve diagnosis and treatment, and we’ll continue to strive towards getting the best treatment to patients at the right time.”

TrackSig is freely available for the research community to use at https://github.com/morrislab/TrackSig.


Related links