July 30, 2019

Canadian Government-Sponsored Collaboration Targets Standardized Cancer Testing

Genome Canada, Ontario Institute for Cancer Research and Thermo Fisher Scientific to focus on pancreatic, prostate and breast cancer

CARLSBAD, Calif. – (July 30, 2019)Genome Canada, the Ontario Institute for Cancer Research (OICR) and Thermo Fisher Scientific are collaborating to develop a complete solution of targeted next generation sequencing (NGS) assays and analysis software designed to more effectively assess – and eventually improve management of – pancreatic, prostate and breast cancer.  

The $6 million, three-year initiative aims to standardize advanced molecular profiling in these disease areas and make the assays commercially available globally. Focusing on rapid genomic diagnostics in pancreatic cancer and targeting treatment in breast and prostate cancers, the partnership builds on previous clinical research between OICR and Thermo Fisher and will inform development of three assays that will be utilized to stratify patients in clinical trials in Ontario and other jurisdictions.

“By supporting research and clinical trials, Genome Canada is helping to put more of Ontario’s innovative cancer diagnostics research into clinical use,” said Dr. John Bartlett, program director, diagnostic development at OICR. “This project has the potential to springboard advanced next-generation sequencing to routine clinical use in Ontario and across Canada.”

Breast and prostate cancer are among the most common types of cancer in Canada, and the country’s five-year net survival rate for pancreatic cancer is only 8 percent. However, there is clear evidence that patient outcomes can be improved with NGS-based testing strategies. A recent U.S. health economics study has shown that advanced cancer patients who received treatment based on NGS testing results experienced double the length of progression-free survival without increasing health care costs.1

While some solutions analyze only DNA sequences, the new targeted NGS assays will provide comprehensive genomic profiles by simultaneously assessing DNA and expression signatures from RNA to provide significantly more insight into driver mutations. The OICR/Thermo Fisher team will leverage this advantage by supplementing the new assays with unique DNA/RNA stratification biomarkers – specific to pancreatic, prostate and breast cancer – previously qualified by OICR translational researchers.

The collaboration is partly funded with a grant from Genome Canada through the Genomic Applications Partnership Program (GAPP). Genome Canada will contribute $2 million, the highest possible level of funding support, with the balance split between OICR and Thermo Fisher, which will cover development costs and validation activities.

Previous research collaborations led by OICR and Thermo Fisher are already well on their way to impacting cancer treatment in the future. Of particular note is a 2016 study designed to identify mutations and copy number variation changes in breast cancer, and clinical research utilizing the Oncomine Comprehensive Assay, which also supports both the National Cancer Institute’s Adult and Pediatric MATCH trials in the United States.

“OICR is a leader in clinical research, with extensive clinical trials in progress to improve care for patients with pancreatic, prostate and breast cancer,” said Jeff Smith, global lead of NGS precision medicine initiatives, clinical NGS and oncology for Thermo Fisher Scientific. “When OICR approached our team with the idea for this project, we saw it as another exciting for opportunity to bring Thermo Fisher’s proven Ion Torrent technology to clinical laboratories across Canada and to contribute to future improvement of patient care.”

1 “A Retrospective Analysis of Precision Medicine Outcomes in Patients With Advanced Cancer Reveals Improved Progression- Free Survival Without Increased Health Care Costs,” Journal of Oncology Practice, Vol 13, Issue 2, February 2017

April 23, 2019

Tumour samples and ultra-low temperatures

Learn about how the Ontario Tumour Bank evaluates the quality of tumour samples stored at ultra-low temperatures over the last decade.

February 12, 2019

Sometimes the simpler, the better: bringing personalized treatment selection for bladder cancer closer to the clinic 

Pathology slides sit in a tray on a lab bench top.

Pathology experts review challenges and opportunities in treatment selection for muscle-invasive bladder cancer (MIBC), propose traditional pathology method to achieve same results as molecular profiling at lower cost

Research has shown that some types of bladder cancer respond well to treatment and other types are resistant, yet molecular subtyping, which can help better define a patient’s cancer and direct them to a more targeted treatment, is not performed in the clinic. This means that patients are often treated with a one-size-fits-all approach. Despite recent research progress, the movement of MIBC subtyping to the clinic has stagnated.

Continue reading – Sometimes the simpler, the better: bringing personalized treatment selection for bladder cancer closer to the clinic 

January 21, 2019

An inside look at OICR’s Tissue Portal

In this video, Cheryl and Ilinca from OICR’s Diagnostic Development program take you inside OICR’s Tissue Portal, which processes tissue samples to ensure that researchers get the most out of these finite resources. To access this service please contact tissue.portal@oicr.on.ca.

October 24, 2018

Researchers investigated almost 200,000 cases of breast cancer: Here’s what they found

Dr. John Bartlett poses for a photo at a table next to a laptop computer displaying lines of code.

 

Research team finds aggressive breast cancers are less frequent than previously thought, and less aggressive breast cancers need more of our attention.

Different subtypes of breast cancer respond to treatment differently and require different treatment approaches. Understanding the distribution of these subtypes and their respective clinical outcomes allows researchers to better understand the disease and identify key research priorities that may have been previously overlooked.

Continue reading – Researchers investigated almost 200,000 cases of breast cancer: Here’s what they found

September 24, 2018

Breaking down barriers to translation: A case of standardization in digital pathology

Jane Bayani In the lab.

OICR takes part in international multicentre study to standardize promising breast cancer digital pathology test

The Ki67 immunohistochemistry assay is a test that can help evaluate the aggressiveness of breast tumours, predict disease outcomes, monitor cancer progression and identify patients who are more likely to respond to a given therapy. Despite its potential to help patients with breast cancer, the analysis of Ki67 has not been widely adopted in the clinic, mostly due to the lack of standardization across laboratories.

Continue reading – Breaking down barriers to translation: A case of standardization in digital pathology

July 31, 2018

Meet the researchers: Cheryl Crozier

Cheryl Crozier talks about her work in OICR’s Diagnostic Development team and how it could help doctors make a difference in treating cancer patients.

June 4, 2018

New guidelines for HER2 testing in breast cancer

An image of the HER2 protein.

Current HER2 tests help predict which breast cancer patients will respond to HER2-targeted therapies, but sometimes these tests provide unclear results. An Expert Panel of pathologists and cancer researchers, including Dr. John Bartlett from OICR, recently published revised clinical practice guidelines for HER2 testing in breast cancer to help improve clarity of HER2 test results.

Continue reading – New guidelines for HER2 testing in breast cancer

January 12, 2018

Large-scale study provides clearer picture of recurrence risk for ER-positive breast cancer

Dr. John Bartlett

Endocrine therapy uses hormone antagonists to greatly reduce the risk of disease recurrence in women with early-stage, estrogen-receptor (ER) positive breast cancer. However, the treatment can come with severe side effects. Around 30 per cent of women stop taking the therapy after three years largely due to these negative impacts. Usually patients receive the hormone therapy for five years following initial treatment (e.g., chemotherapy, surgery), but it can also be taken longer-term. A central question facing patients and clinicians is how to balance, in their decision making, the side effects of long-term treatment with the potential reduction in recurrence risk. In short, they want to know: ‘is it worth it?’ 

Continue reading – Large-scale study provides clearer picture of recurrence risk for ER-positive breast cancer

September 6, 2017

OICR launches Tissue Portal to support tissue-based research projects

Fu Yan - In the lab.

OICR’s Tissue Portal is a new central entry and exit point for human tissue derived samples handled at OICR. This will serve as a gateway for tissue-based research projects to access over 100 services and resources at OICR being made available through the OICR Collaborative Research Resources on a cost-sharing basis. The Tissue Portal will standardize and streamline the storage, processing and distribution of samples for collaborative research studies at OICR.

Continue reading – OICR launches Tissue Portal to support tissue-based research projects

April 13, 2017

Could diagnosing cancer as rare diseases improve outcomes for patients?

Dr. John Bartlett

Breast cancer is the most common form of cancer amongst women in Canada and worldwide, but despite its prevalence, a group of researchers believes that it should often be treated as a rare disease. Doing so would change clinical approaches and improve treatment for patients.

Continue reading – Could diagnosing cancer as rare diseases improve outcomes for patients?

September 19, 2016

Open resource: How we’re making our research resources more accessible to the community

OICR Researcher in the lab

Dr. Rebecca Tamarchak discusses the launch of OICR’s new Collaborative Research Resources Directory, how it works, and plans for its development in the future.

Over the past decade, OICR has established state-of-the-art Technology Programs in molecular pathology and diagnostic development, genomics, informatics, medicinal chemistry and imaging, which are translating promising cancer discoveries into products, services and policies that improve cancer prevention and care for patients.

Continue reading – Open resource: How we’re making our research resources more accessible to the community

Next Page »