July 30, 2019

Canadian Government-Sponsored Collaboration Targets Standardized Cancer Testing

Genome Canada, Ontario Institute for Cancer Research and Thermo Fisher Scientific to focus on pancreatic, prostate and breast cancer

CARLSBAD, Calif. – (July 30, 2019)Genome Canada, the Ontario Institute for Cancer Research (OICR) and Thermo Fisher Scientific are collaborating to develop a complete solution of targeted next generation sequencing (NGS) assays and analysis software designed to more effectively assess – and eventually improve management of – pancreatic, prostate and breast cancer.  

The $6 million, three-year initiative aims to standardize advanced molecular profiling in these disease areas and make the assays commercially available globally. Focusing on rapid genomic diagnostics in pancreatic cancer and targeting treatment in breast and prostate cancers, the partnership builds on previous clinical research between OICR and Thermo Fisher and will inform development of three assays that will be utilized to stratify patients in clinical trials in Ontario and other jurisdictions.

“By supporting research and clinical trials, Genome Canada is helping to put more of Ontario’s innovative cancer diagnostics research into clinical use,” said Dr. John Bartlett, program director, diagnostic development at OICR. “This project has the potential to springboard advanced next-generation sequencing to routine clinical use in Ontario and across Canada.”

Breast and prostate cancer are among the most common types of cancer in Canada, and the country’s five-year net survival rate for pancreatic cancer is only 8 percent. However, there is clear evidence that patient outcomes can be improved with NGS-based testing strategies. A recent U.S. health economics study has shown that advanced cancer patients who received treatment based on NGS testing results experienced double the length of progression-free survival without increasing health care costs.1

While some solutions analyze only DNA sequences, the new targeted NGS assays will provide comprehensive genomic profiles by simultaneously assessing DNA and expression signatures from RNA to provide significantly more insight into driver mutations. The OICR/Thermo Fisher team will leverage this advantage by supplementing the new assays with unique DNA/RNA stratification biomarkers – specific to pancreatic, prostate and breast cancer – previously qualified by OICR translational researchers.

The collaboration is partly funded with a grant from Genome Canada through the Genomic Applications Partnership Program (GAPP). Genome Canada will contribute $2 million, the highest possible level of funding support, with the balance split between OICR and Thermo Fisher, which will cover development costs and validation activities.

Previous research collaborations led by OICR and Thermo Fisher are already well on their way to impacting cancer treatment in the future. Of particular note is a 2016 study designed to identify mutations and copy number variation changes in breast cancer, and clinical research utilizing the Oncomine Comprehensive Assay, which also supports both the National Cancer Institute’s Adult and Pediatric MATCH trials in the United States.

“OICR is a leader in clinical research, with extensive clinical trials in progress to improve care for patients with pancreatic, prostate and breast cancer,” said Jeff Smith, global lead of NGS precision medicine initiatives, clinical NGS and oncology for Thermo Fisher Scientific. “When OICR approached our team with the idea for this project, we saw it as another exciting for opportunity to bring Thermo Fisher’s proven Ion Torrent technology to clinical laboratories across Canada and to contribute to future improvement of patient care.”

1 “A Retrospective Analysis of Precision Medicine Outcomes in Patients With Advanced Cancer Reveals Improved Progression- Free Survival Without Increased Health Care Costs,” Journal of Oncology Practice, Vol 13, Issue 2, February 2017

July 29, 2019

Computational dissection: What can we learn from the cells around cancer cells?

OICR researcher looks into what non-tumour cells can tell us about breast cancer

Natalie Fox
Natalie Fox, OICR

When a biopsy is drawn from a patient, it consists of a mix of cancerous and healthy cells, like fat and blood cells. Researchers are often interested in diseased cells, but without looking into the surrounding tissue, they could be missing part of the story.

Natalie Fox, a PhD candidate at OICR, is investigating what we can learn from the cells surrounding cancer cells.

“When we look into a patient sample computationally, we see distorted signals because of overlapping data from many different types of cells,” says Fox. “We need to dissect the parts we want to study, but instead of using a knife or a laser, we use computers.”

Fox and collaborators have analyzed nearly 1800 tumour samples from patients with breast cancer, examining the transcriptome of tumour cells and the cells around tumours – or the tumour’s microenvironment.

Her study, recently published in Nature Communications, reveals the landscape of transcriptomic interactions between breast cancers and their microenvironments. Her study also sheds light on associations between these transcriptomes and patient survival, gene mutations and breast cancer subtypes.

“We now have a clearer picture that tells us more about the breast microenvironment than we’ve known before,” Fox says. “Bit by bit, we’ve analyzed and scrutinized these data, then assembled these bits into a comprehensive landscape.”

Fox found that mutations in cancer genes such as CDH1 and TP53 are associated with changes in the transcriptome of the tumour’s microenvironment. She says more research is needed to clarify the biologic rationale behind her observations, but her work has set the stage for researchers to do so.

“Above all else, this work demonstrates an important approach for improving our understanding of associations between the tumour and the microenvironment,” Fox says. “We presented a framework that others can use to analyze the tumour microenvironment in their cancer of interest and potentially develop new biomarkers for predicting cancer patient outcomes.”

March 27, 2019

The winner of last year’s FACIT Falcons’ Fortunes pitch competition is already seeing early success in moving her product to the clinic

The winner will soon meet with U.S. regulators, marking a major step towards commercializing her innovative polymer product, ReFilx™, and bringing it to breast cancer patients.

Dr. David O’Neill, President, FACIT, and Dr. Soror Sharifpoor, Co-Founder and Chief Executive Officer, Polumiros Inc., pose for a photo.

It took only 10 minutes for a panel of investors and industry experts to recognize that Dr. Soror Sharifpoor and her oncology product – ReFilx™ – were worth supporting. Last spring, she pitched ReFilx™ in the FACIT Falcons’ Fortunes competition and won the top prize – the $50,000 Ernsting Entrepreneurship Award. Almost 12 months later, Sharifpoor and her team at Polumiros Inc. will be meeting with the U.S. Food and Drug Administration (FDA) to officially begin the regulatory submission process – a necessary first step in bringing their product to patients.

ReFilx™ is a polymer designed to fill the breast tissue cavities left in breast cancer patients following a lumpectomy. The polymer dissolves over time, allowing the patient’s cells and tissue to regrow in its space, thus preventing breast tissue defects from forming.

“ReFilx™ could improve the emotional and mental well-being of breast cancer patients,” says Sharifpoor. “In addition to the psychosocial benefits, it could also encourage surgeons to take more aggressive margins around the tumour, thereby reducing the chances of cancer recurrence.”

Bringing ReFilx™ to the clinic requires rigorous clinical testing and regulatory review, which begins with a pre-submission meeting with the FDA. FACIT’s support allowed Sharifpoor to continue with pre-clinical testing, hire a regulatory consultant and further develop ReFilx™ into an injectable form.

In a few months, Sharifpoor and her team will have the pre-submission meeting to collect feedback on their product, which will then be used to guide their future submission to the FDA and their plans for further clinical research. Polumiros Inc. intends to pursue this research in Canada.

“We’re excited to initiate our regulatory submission process,” says Sharifpoor. “We’re fortunate to have had FACIT’s support, allowing us to develop ReFilx™ faster and smarter than we would have on our own.”

FACIT, OICR’s strategic partner in commercialization, is hosting its 6th annual pitch competition this year on April 4, 2019. The Falcons’ Fortunes event will feature six aspiring entrepreneurs from across the province who are developing oncology-related innovations. FACIT runs the annual competition as part of its broader mandate to support translation of cancer research to benefit Ontario’s economy and patients worldwide.

Learn more about Falcons’ Fortunes – FACIT’s annual pitch competition or read about this year’s event details.

March 15, 2019

Towards rational breast cancer treatment in the era of “less is more”

Expert researchers find shorter treatment cycles may reduce risk of breast cancer returning

Researchers have found that the dosage and interval of chemotherapy treatments have a significant impact on some breast cancer patients’ survival. For a very small minority of patients the difference of a week between chemotherapy treatments could mean the difference between life and death – and researchers are working to identify exactly who those patients are.  

Over the last few decades, breast cancer clinical trials have investigated the way in which patients receive and respond to different chemotherapy dosing regimens. Some have tested if a shorter – but more intense – two-week treatment cycle is more effective than the standard three-week cycle. These trials, however, are often limited in size and do not have the statistical power to detect a difference in response to treatment.

Researchers from the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) have recently performed a meta-analysis across 26 breast cancer trials to help clarify this dosing dilemma. As reported in The Lancet, they found that more intense dosing regimens were associated with a decreased risk of death from breast cancer and a decreased risk that the disease will return in some patients.

“As chemotherapy kills tumour cells, the residual – or remaining – cancer cells have more room to grow and tend to grow faster,” says Dr. John Bartlett, Program Director of Diagnostic Development at OICR and member of the EBCTCG Steering Committee. “These trials hypothesized that a more intense dosing regimen would give tumour cells essentially less room to grow. With the results of the EBCTCG overview study, we can say with confidence that a two-week treatment schedule will help to prevent death in a small portion of patients.”

The analysis found that approximately one in 50 women benefited from more intense dosing.

“The challenge now is to determine exactly which patients can benefit from intense dosing and which patients would not,” says Bartlett.

“If we can do so, we can prevent deaths due to breast cancer for some, while minimizing the negative side effects of intense chemotherapy for others.”

The ECBTCG is continuing to investigate dosing intensity in common breast cancer subtypes in parallel with researchers who are looking to find the biological basis of these differing responses to treatment.

“We’re in an era of de-escalation where we’re heavily invested in reducing overtreatment,” Bartlett says. “But this work helps us move towards an era of biologically rational treatment recommendations, one where breast cancer patients get the treatment they need at the right time and in the right way.”

November 22, 2018

Research examines healthcare experience for cancer patients who also have diabetes

Hospital waiting room

Dr. Lorraine Lipscombe investigates why the 20 per cent of cancer patients with diabetes often experience worse outcomes

Several studies show that health outcomes – such as overall survival and preventable hospitalizations – are worse for cancer patients who also have diabetes. However, the reasoning behind this disparity is unclear. Dr. Lorraine Lipscombe, an endocrinologist at Women’s College Hospital and Diabetes Canada Investigator Award holder, is investigating why these differences exist and what we can do to avoid preventable complications.

Continue reading – Research examines healthcare experience for cancer patients who also have diabetes

October 24, 2018

Researchers investigated almost 200,000 cases of breast cancer: Here’s what they found

Dr. John Bartlett poses for a photo at a table next to a laptop computer displaying lines of code.

 

Research team finds aggressive breast cancers are less frequent than previously thought, and less aggressive breast cancers need more of our attention.

Different subtypes of breast cancer respond to treatment differently and require different treatment approaches. Understanding the distribution of these subtypes and their respective clinical outcomes allows researchers to better understand the disease and identify key research priorities that may have been previously overlooked.

Continue reading – Researchers investigated almost 200,000 cases of breast cancer: Here’s what they found

September 25, 2018

Breast cancer radiotherapy in a single visit provides more convenient option to patients, reduces burden of therapy

Seeds used in radiation therapy are shown, along with a penny to provide scale.

Cross-Canada research team moves image-guided ultrasound system into clinical development

Traditional breast cancer radiation treatment requires multiple hospital visits over a period of weeks or months, which may be onerous to patients who live far from hospitals or in remote communities. An alternative radiotherapy technique, Permanent Breast Seed Implantation (PBSI), requires only a single hospital visit, but it involves the implantation of multiple small radioactive metal pellets into the breast of the patient within millimetres of a target. The procedure to administer this treatment is difficult to plan and complex to execute – impeding the adoption of PBSI in the clinic.

Continue reading – Breast cancer radiotherapy in a single visit provides more convenient option to patients, reduces burden of therapy

September 24, 2018

Breaking down barriers to translation: A case of standardization in digital pathology

Jane Bayani In the lab.

OICR takes part in international multicentre study to standardize promising breast cancer digital pathology test

The Ki67 immunohistochemistry assay is a test that can help evaluate the aggressiveness of breast tumours, predict disease outcomes, monitor cancer progression and identify patients who are more likely to respond to a given therapy. Despite its potential to help patients with breast cancer, the analysis of Ki67 has not been widely adopted in the clinic, mostly due to the lack of standardization across laboratories.

Continue reading – Breaking down barriers to translation: A case of standardization in digital pathology

July 10, 2018

Targeting epigenetic proteins could help prevent breast cancer

Dr. Julie Livingstone

Researchers further clarify the role of epigenetic proteins in the development of breast cancer, and discover that inhibiting these proteins could prevent the disease in women at high risk.

Continue reading – Targeting epigenetic proteins could help prevent breast cancer

June 14, 2018

New OICR President and Scientific Director comments on breakthrough in breast cancer T-cell immunotherapy

Dr. Laszlo Radvanyi

For the first time, a patient’s late-stage breast cancer has been successfully treated with T-cell immunotherapy. This cutting-edge approach, which is currently in clinical trials in the U.S., modified the patient’s naturally-occurring immune cells to fight her tumours that had spread throughout her body. The patient has been cancer free for the past two years and her remarkable tumour regression represents the potential impact of this new immunotherapeutic approach.

Continue reading – New OICR President and Scientific Director comments on breakthrough in breast cancer T-cell immunotherapy

June 4, 2018

New guidelines for HER2 testing in breast cancer

An image of the HER2 protein.

Current HER2 tests help predict which breast cancer patients will respond to HER2-targeted therapies, but sometimes these tests provide unclear results. An Expert Panel of pathologists and cancer researchers, including Dr. John Bartlett from OICR, recently published revised clinical practice guidelines for HER2 testing in breast cancer to help improve clarity of HER2 test results.

Continue reading – New guidelines for HER2 testing in breast cancer

April 12, 2018

Restorative Breast Cancer Solution Start-Up Wins the 2018 FACIT Pitch Competition

Biotechnology competition modeled after popular TV program Dragons’ Den

TORONTO, ON (April 12, 2018) – A panel of investor-judges has selected Ontario-based oncology researcher Soror Sharifpoor of Polumiros Inc. as the winner of the 2018 FACIT Falcons’ Fortunes competition. The $50,000 award is intended to support further development of their innovative cancer research. FACIT runs the annual competition as part of its broader mandate to support translating research into Ontario companies to impact the lives of patients with cancer.

Now in its fifth year, the FACIT Falcons’ Fortunes competition is open to any Ontario-based oncology researcher (academics, research institutions, research hospitals and start-ups). Entrepreneurial scientists are invited to pitch innovative research ideas to a panel of four investors in a competition that is modeled after the popular CBC television program Dragons’ Den. The winners receive the $50,000 “Ernsting Entrepreneurship Award.” After follow-up technical evaluation of the underlying innovation, the money funds product development for one year.

Continue reading – Restorative Breast Cancer Solution Start-Up Wins the 2018 FACIT Pitch Competition

Next Page »