May 13, 2020

Unexpected mitochondria activity in leukemia cells gives opening for new treatments

Mitochondria (yellow) found to be influencing gene expression within the nuclei (blue) of leukemia cells. (Credit: Torsten Wittmann, University of California, San Francisco)

Toronto researchers unravel key cancer-driving circuit between the “powerhouse” and the “brain” of leukemia cells, in big first step for future therapeutic discovery and development

Dr. Dilshad Khan.

Over the last few decades, research has suggested that mitochondria, also known as the “powerhouses of the cell”, play an important role in tumour growth and development, but little is known about how to prevent these cellular machines from wreaking havoc. In a recent study, scientists have discovered a key protein that is made in the “powerhouse of the cell”, unexpectedly affects the expression of genes in the nucleus, or the “brain”, of certain leukemia cells. The study was launched by Dr. Dilshad Khan, who – alongside colleagues in Dr. Aaron Schimmer’s lab at the Princess Margaret Cancer Centre – set out to determine which genes in the mitochondria were essential to the growth and viability of acute myeloid leukemia (AML).

Through genome-wide CRISPR screening and other gene-manipulating techniques, they discovered a key mitochondrial protein that AML cells can’t survive without – MTCH2. Their findings, which were recently published in Blood, may eventually lead to new ways to fight this common and fast-growing form of blood cancer.

“We found that the mitochondrial protein MTCH2 is essential for the growth and survival of AML cells,” says Khan, Postdoctoral Fellow in the Schimmer Lab, who is the first author of the study. “But finding this protein was just one piece of the puzzle. We needed to understand how it worked.”

With Khan’s expertise in epigenetics, the team systematically dissected how MTCH2 affects AML cells. They found that blocking this protein would ultimately cause leukemic stem cells – the difficult-to-treat renewable cells that are thought to be at the root of leukemia – to irreversibly transform into cells that are easier to eliminate with existing chemotherapies.

“Through a series of experiments, we unraveled how MTCH2 affects AML cells and discovered that this protein has a remarkable and unexpected impact on nuclear pathways – it could control nuclear gene expression to affect AML stemness and survival,” says Khan. “We never thought this could happen, but now that we’ve discovered these new links, we could potentially find new ways to control these mechanisms.”

Next, the Schimmer Lab and collaborators plan to investigate MTCH2’s specific mechanism to find where inhibitors – or potential cancer drugs – could block its path. These initiatives will add to Schimmer’s research on dysregulated mitochondrial pathways in leukemia, including his recent work on fat production and copper distribution in leukemic stem cells. This research is funded in part by OICR’s Acute Leukemia Translational Research Initiative and OICR’s Cancer Therapeutics Innovation Pipeline.

“This study showed us that mitochondrial proteins are more interconnected with other cellular networks than we thought,” says Khan. “These fundamental findings have shed light on new research avenues that we can pursue to find new solutions that will hopefully benefit patients with AML.”

March 2, 2020

Study reveals roots of leukemia that current chemotherapies can’t reach

John Dick

Researchers find the roots of leukemia relapse are present at diagnosis, uncovering clues to new treatment approaches

Despite significant advances in the treatment of acute lymphoblastic leukemia (ALL), the disease often returns aggressively in many patients after treatment. It is thought that current chemotherapies eliminate most leukemia cells, but groups of resistant cells may survive therapy, progress and eventually cause relapse. Dr. John Dick and collaborators have found these cells.

In a recent study published in Cancer Discovery, Dick and collaborators were able to identify and isolate groups of genetically distinct cells that drive ALL relapse.

The cells, termed diagnosis relapse initiating (dRI) clones were found to have genetic characteristics that differ from the other leukemia cells that are eliminated by treatment.

The study, along with a complementary study published in Blood Cancer Discovery, unraveled the genetic, epigenetic, metabolic and pro-survival molecular pathways driving treatment resistance. Together, these papers provide an integrated genomic and functional approach to describing the underlying genetics and mechanisms of relapse for ALL.

Interestingly, the research group discovered that dRI clones are present at diagnosis, opening opportunities to improve treatment up-front, devise drugs that target these resistant cells and prevent relapse from ever occurring.

Dr. Stephanie Dobson

“Our study has shown that genetic clones that contribute to disease recurrence already possess characteristics such as therapeutic tolerance that distinguish them from other clones at diagnosis,” says Dr. Stephanie Dobson, first author of the study who performed this research as a member of John Dick’s Lab. “Being able to isolate these clones at diagnosis, sometimes years prior to disease recurrence, has enabled us to begin to profile the properties allowing these particular cells to survive and act as reservoirs for relapse. This knowledge can be used to enhance our therapeutic approaches for targeting relapse and relapse-fated cells.”

“Xenografting added considerable new insight into the evolutionary fates and patterns of subclones obtained from diagnosis samples,” says John Dick, who is the co-senior author of the study, Senior Scientist at the Princess Margaret Cancer Centre and leader of OICR’s Acute Leukemia Translational Research Initiative. “We were able to gather extensive information about the genetics of the subclones from our models, which helped us describe the trajectories of each subclone and the order in which they acquired mutations.”

Ordering these mutations relied on the advanced machine learning algorithms designed by Dr. Quaid Morris and Jeff Wintersinger at the University of Toronto.

Research efforts are underway to build on these discoveries and determine how to block dRI clones.

The study was led by researchers at St. Jude Children’s Research Hospital, the Princess Margaret Cancer Centre and the University of Toronto and supported in part by OICR’s Acute Leukemia Translational Research Initiative.

This post has been adapted from the St. Jude Children’s Research Hospital news release.