April 24, 2019

Targeting fat production could help tackle leukemia

Collaborative research group discovers a key pathway in the development of acute myeloid leukemia – and a potential new therapeutic strategy to treat the disease

Dr. Mingjing Xu and Ayesh Seneviratne pose in the Schimmer Lab at the University of Toronto.

Despite progress in the treatment of acute myeloid leukemia (AML), many patients still die from relapse or experience significant side effects from treatment. Dr. Aaron Schimmer, who is Research Director of the Princess Margaret Cancer Centre and co-lead of OICR’s Acute Leukemia Translational Research Initiative, worked with his collaborators to understand the root cause of AML relapse to develop more effective and less toxic therapies. Their recent findings are both surprising and promising.

The group, which consists of researchers from across Ontario and abroad, investigated the pathways that are uniquely important to the growth and development of leukemic stem cells (LSCs) – also known as the cells at the “root” of the disease. They discovered a key pathway, as described in Cell Stem Cell, which can be altered to control how LSCs mature. Interestingly, they found that this process can be modulated with an essential phospholipid (a type of fat), called phosphatidylserine.

“We discovered a pathway that these stem cells rely on. We investigated further and found that interfering with lipid metabolism – that is, the fats within these cells – could potentially slow their growth and reduce their ability to cause relapse,” says Ayesh Seneviratne, MD/PhD candidate in the Schimmer Lab at the University of Toronto and co-first author of the publication.

Normally, phosphatidylserine is important in maintaining the integrity of the cell membrane and normal cell function, but the authors found that within LSCs, phosphatidylserine acted as a trigger for the cell to lose its self-renewal properties. They are the first group to describe increasing phosphatidylserine as a potential therapeutic strategy for AML.

“We now better understand the function of this metabolite in leukemia, and in turn, we have found a new way to target the disease,” says Dr. Mingjing Xu, postdoctoral fellow in the Schimmer Lab and co-first author of the publication. “We are enthusiastic to pursue further studies and unravel how phosphatidylserine ceases leukemia growth.”

Schimmer says that this work could not have been done without the contributions of many collaborators.

“This discovery is a product of a concerted effort between many researchers,” says Schimmer. “Together, we’ve found new insights into the biology of leukemia and turned those insights into a new potential therapeutic strategy.”

September 10, 2018

Researchers find unexpected cells at the centre of recurrent leukemia

Dr. Mick Bhatia poses for a photo in his lab.

Hamilton researchers discover that cancer stem cells may not be the only culprits of acute myeloid leukemia relapse

Although current chemotherapy for acute myeloid leukemia (AML) is effective in the short term, the disease often returns a few years after treatment. A new study suggests that the relapse of leukemia may not be caused by leukemic stem cells – a special set of cells that can avoid initial treatment by not dividing, then give rise to new cancerous cells after therapy – but rather a different class of leukemic cells.

Continue reading – Researchers find unexpected cells at the centre of recurrent leukemia