March 1, 2021

Research breakthrough paves way for more cancer patients to benefit from immunotherapy, regardless of ancestry

Dr. Naoto Hirano

OICR Investigator, Dr. Naoto Hirano, expands arsenal of immunotherapy technologies, opening new frontiers in immunotherapy for cancer patients and beyond

Adoptive cell therapy is a promising cancer treatment that uses our immune system to eliminate cancer cells. These treatments, however, are only effective for a small subset of individuals with specific types of cancer and specific inherited genes. Dr. Naoto Hirano’s recent breakthrough paves the way for novel immunotherapies to help more patients, regardless of their genetic ancestry, live longer and healthier lives.

In a study published in Nature Biotechnology, Hirano and his collaborators developed a new technology that rigorously and robustly identifies the immune cells that are capable of recognizing and eliminating cancer cells. This technology allows researchers to develop new immunotherapies for cancer patients that are not limited by the differences – or heterogeneity – of tumour cells, thus expanding the potential impact of immunotherapy for patients around the world.

Hirano’s technology applies to an immunotherapy approach called T cell receptor (TCR) gene therapy that is based on genetically-engineered immune cells (T cells) recognizing and binding to specific molecules, called peptide-loaded human leukocyte antigens (HLA), on the surface of cancer cells. Although there has been progress in TCR therapy, there are more than 28,000 different variations of HLA found in humans and current TCR therapies only work for a few of these variations.

“Historically, TCR treatments have been developed for those who had the most common and well-studied HLA alleles, which often meant that these immunotherapies only worked for people from Caucasian ancestry,” says Hirano, who is a Senior Scientist at the Princess Margaret Cancer Centre and OICR Clinician Scientist. “It was an important goal for us to develop a technology that could work for a broad range of HLA alleles. We’re proud of what we developed because it could help many more cancer patients in the future.”

The technology presented in this study involves a methodology that can – in a single step at a low expense – form a functional protein structure, called a dimer, that is comprised of any peptide and HLA molecule, regardless of type, and can bind to and identify a variety of T cells. The method improves the binding affinity between T cells and HLA molecules nearly 200-fold relative to prior methods, which could allow researchers to better identify and engineer the T cells for novel immunotherapies.

The technology has been licensed to TCRyption Inc. for further development, translation, and large-scale implementation. In the future, it may be applied to fields other than cancer research and care, including autoimmune diseases such as rheumatoid arthritis and type 1 diabetes.

“I’m grateful for the cancer research community’s support over the years, which has enabled me to focus on important and challenging issues,” says Hirano, who was named the University Health Network’s Inventor of the Year last year for developing these analysis techniques. “Only with the support for rigorous experimentation, deep expertise, and innovative thinking, were we able to make this breakthrough.”

Learn more about the work behind this publication, or read more about Dr. Hirano.


Note: N.H. has received research funding from Takara Bio and served as a consultant for Takara. The University Health Network has filed a patent application related to this study on which N.H. is named as a lead inventor. N.H. is cofounder and has equity in TCRyption to which the technologies used in this study have been licensed.

February 26, 2021

Drug combination results in longer survival for patients with recurrent and advanced ovarian cancer

Dr. Stephanie Lheureux and Dr. Amit Oza
Dr. Stephanie Lheureux | Dr. Amit Oza

An OICR-supported research team at the Princess Margaret Cancer Centre has shown that adding a targeted drug to chemotherapy results in longer survival and a stronger response to treatment in a difficult-to-treat form of ovarian cancer.

When a patient’s ovarian cancer becomes resistant to treatment, the patient has few alternative options and faces an estimated survival of less than 18 months. This is a reality for approximately one in four women with the disease.

Against this challenge, a team OICR-supported through OICR’s Ovarian Cancer Translational Research Initiative (TRI), headed by Dr. Stephanie Lheureux, Princess Margaret (PM) Clinician Investigator and Dr. Amit Oza, PM Senior Scientist and OICR TRI leader, led a Phase II clinical trial including nearly 100 women across 11 centres to evaluate the combination therapy of adavosterib and gemcitabine. Their discoveries, which were recently published in The Lancet, demonstrated that this combination increased survival by 4.3 months relative to chemotherapy and placebo alone. 23 per cent of patients’ cancers responded to the chemotherapy, in contrast to a 6 per cent response rate seen using chemotherapy alone.

“By combing two drugs, we were able to change the trajectory of cancer for a high-risk group of women with advanced disease who did not have many choices left,” says Oza, Medical Director of the Cancer Clinical Research Unit and Co-Director of the Bras Drug Development Program at Princess Margaret Cancer Centre. “That is significant.”

Lead author Dr. Stephanie Lheureux says that the study provides a signal of hope for women with ovarian cancer who develop drug-resistance to treatment. The study included some women who had received up to eight different previous treatments which had stopped working.

“As we learn more and more about the biology of tumours, we can target treatments more precisely to the molecular changes in a cancer to improve the type and response of our treatments. That will change outcomes for patients,” says Lheureux, who is also the Princess Margaret Site Lead for Gynecological Oncology. “I want our patients to know there is hope to find better treatment to control their cancer.”

By combing two drugs, we were able to change the trajectory of cancer for a high-risk group of women with advanced disease who did not have many choices left

Dr. Amit Oza

The study participants had high-grade serous ovarian cancer – the most malignant form of ovarian cancer, accounting for up to 70 per cent of all ovarian cancer cases. They were randomly assigned to receive either adavosertib plus gemcitabine (chemotherapy) or placebo plus gemcitabine.

The patients’ tumours were biopsied before and during treatment to assess the effectiveness of the drug regimens. Analysis of genetic mutations and changes in DNA damage response pathways was performed by the Joint Genomics Program at OICR and the Princess Margaret Cancer Centre.

“This discovery underscores the importance of bringing scientists and clinicians together to tackle difficult questions from different perspectives to offer new insights into the biology of cancer,” says Dr. Laszlo Radvanyi, President and Scientific Director, Ontario Institute for Cancer Research. “It shows how we can push these damaged cancer cells right smack into mitotic catastrophe to their demise. This clinical trial has validated good science that has begun to uncover how a cancer cell’s own DNA repair mechanism can be used against it and capitalizes on this unique vulnerability by combining drugs in a smart way. The small-molecule DNA repair inhibitors used in this study targeting the G2-M checkpoint hold great promise as chemotherapy enhancers by further damaging and ultimately destroying tumour cells, thereby overcoming treatment-resistant ovarian cancer.”

In addition to improving overall survival by 4.3 months, the combination of adavosertib and gemcitabine improved progression-free survival by 1.6 months relative to chemotherapy alone.

“Taken together, these three outcomes give us a strong signal that we can potentially improve survival for these patients who face bleak prospects,” says Dr. Oza, adding that the study carefully co-ordinated patients with similar genomic backgrounds with a targeted drug that exploits a defect in cancer cells.

“This is precision medicine at its best,” he adds. “This is how we will develop better treatments for our patients.”

Through whole-exome sequencing, the study found that patients’ tumours acquire several changes – or mutations – that play an important role in regulating critical cell cycle checkpoints. These mutations could disable these “quality control” checks, allowing cancer cells with damaged DNA to continue dividing and growing unimpeded.

Further, they discovered that the drug adavosertib could effectively target tumour cells that harbour the key TP53 mutation.

“We exploited a fatal flaw in cell division, diverting and stopping the damaged cells from growing into a tumour,” explains Lheureux. “We showed the potential of targeting the cell cycle in a specific subgroup of patients with highly resistant ovarian cancer. This opens up new avenues of treatment possibilities.”

The research group now plans to evaluate the impact of this combination on patients’ quality of life and analyze patients’ blood samples to search for blood-based indicators of treatment resistance.


In addition to OICR’s support, the study was also funded by the Princess Margaret Cancer Foundation, the U.S. National Cancer Institute Cancer Therapy Evaluation Program, the U.S. Department of Defense Ovarian Cancer Research Program, and AstraZeneca.

February 26, 2021

Bringing AI-enabled cancer support to life

Text-based online support groups augmented with a new tool for detecting distress

Therapist-led online support groups can provide a safe space for people affected by cancer to discuss fear, normalize stress, build resilience and enhance coping. Cancer Chat Canada offers real time text-based support groups, but therapists who lead these groups often feel challenged to address the needs of each participant in the absence of visual cues. Recent Ontario-made advances in artificial intelligence (AI) may offer potential solutions.

In a paper recently published in JMIR Research Protocols, an Ontario-based research group outlines their new AI-enabled virtual therapy cofacilitator tool for online cancer support groups. The tool uses a machine learning algorithm based on interpreting patterns of speech and language to track support group participants’ progress in real-time, while providing feedback to the leading therapist.

The research initiative was supported by OICR through the OICR-Cancer Care Ontario (Ontario Health) Health Services Research Network, and led by Drs. Yvonne Leung and Mary Jane Esplen, experts in the psychological impact of cancer.

Workflow of how the chatbot works.

“Online support groups are accessible and effective at reducing cancer-related emotional distress, but it can be challenging to monitor individual participant distress and engagement while responding to multiple participants’ messages simultaneously,” says project lead Esplen, Professor and Vice-Chair, Equity and Mentorship in the Department of Psychiatry, University of Toronto and former Lead of the de Souza Institute. “With multiple participants typing at the same time, nuances of text messages and red flags for distress can sometimes be missed. Our tool serves as an AI-enabled cofacilitator that can enhance the therapist’s ability to address these concerns.”

With a tool that can detect and flag issues, therapists could prioritize concerns more effectively, provide more individualized support in real time, and direct treatment accordingly in a timely manner.

In 2020, the research group completed the first phase of their study, during which they developed the AI-enabled cofacilitator tool. Now, in the second phase, they are evaluating the tool’s effectiveness by scoring its ability to accurately output psychometric measures, such as fear, sadness and hopelessness.

“The goal is to visualize emotions and sentiments throughout therapy to make online group therapy more effective,” says first author Leung, who is an Assistant Professor at the University of Toronto. “We believe these tools and technologies can be used to strengthen person-centred care by attending to individual needs and expanding access to high-quality virtual health care. We’re delighted to be in the process of validating such a cutting-edge tool.”

Should effectiveness be demonstrated in their clinical studies, the group plans to integrate their AI-enabled cofacilitator into Cancer Chat Canada’s online psychosocial oncology services, and potentially adapt the cofacilitator algorithm for other cancer-related support services.

“We’re proud of the progress made so far,” says Esplen. “Our team was strategically built to incorporate different areas of expertise and different perspectives. We’ve tested each step along the way, and we look forward to building more tools to enhance patient therapy and care.”

Read more about the OICR-CCO Health Services Research Network on OICR News.

February 23, 2021

Premier Doug Ford visits OICR

Doug Ford and Trevor Pugh

On February 23, Ontario Premier Doug Ford visited MaRS and included a stop at OICR to learn about how the Institute is using its expertise in genomics and other areas to contribute to COVID-19 research. Premier Ford was accompanied by MPPs Donna Skelly and Nina Tangri, who are Parliamentary Assistants to the Minister of Economic Development, Job Creation and Trade, Vic Fedeli.

During the visit Premier Ford met with members of OICR and FACIT leadership and was then given a demonstration of some of OICR’s COVID-19 research by Dr. Trevor Pugh, Director of the OICR-Princess Margaret Cancer Centre Joint Genomics Program.



Premier Ford also spoke to reporters during his visit and conveyed his thanks and support for OICR’s research into both cancer and COVID-19. “These are the areas that Ontario wants to invest in to lead the world in research, not only in COVID but in cancer and other diseases…We are very grateful for all the folks here.”

Read more about OICR contributions to COVID-19 research.





February 4, 2021

OICR-supported clinical trial leads to practice-changing results for men with prostate cancer

Multidisciplinary research group demonstrates that using MRI and targeted biopsies can avoid unnecessary prostate biopsies in a third of men and reduce the diagnosis of insignificant cancers

Determining whether a patient with prostate cancer requires aggressive therapy or active surveillance is a challenge. Current tests can detect early signs of prostate cancer, but these tests can lead to many unnecessary and painful biopsies for patients whose disease never becomes aggressive.

In an OICR-funded Phase III clinical trial, researchers have found that using Magnetic Resonance Imaging (MRI) and MRI-guided biopsies as needed, can reduce the number of unnecessary prostate biopsies and the diagnosis of insignificant cancers. The study results were recently published in JAMA Oncology.

The study, called the Prostate Evaluation for Clinically Important Disease: MRI vs Standard Evaluation Procedures (PRECISE), included 453 participants at cancer centres across Canada who were assigned to either the current standard of care – a systematic transrectal ultrasound-guided (TRUS) biopsy – or a new method – MRI with MRI-guided biopsy as needed.

The study demonstrated that using MRI and MRI-targeted biopsies caught clinically significant cancers as effectively as conventional TRUS biopsies, but reduced the rate of men undergoing biopsy by almost 40 per cent. The MRI method also halved the number of unnecessary diagnoses of slow growing, clinically insignificant cancers. Additionally, those who did have biopsies in the MRI arm had significantly fewer samples taken relative to those in the TRUS biopsy arm, meaning fewer needles and less pain and discomfort for patients.

Dr. Greg Pond

These clinical data show the revolutionary impact of the use of prostate MRI in cancer diagnosis and surveillance.

“Approximately one in eight men will be diagnosed with prostate cancer in their lifetime,” says the study’s lead statistician and OICR Investigator, Dr. Greg Pond, who is also an Associate Professor at McMaster University and Senior Biostatistician at the Ontario Clinical Oncology Group. “These clinical data show the revolutionary impact of the use of prostate MRI in cancer diagnosis and surveillance.”

Dr. Masoom Haider

“Using our current standard methods, we recognize that we are overdiagnosing some prostate cancers, leading to unnecessary biopsies and treatments,” says co-lead of the study, Dr. Masoom Haider, Head of the Radiomics and Machine Learning Research Lab at the Lunenfeld-Tanenbaum Research Institute, Professor at the University of Toronto, and OICR Clinician Scientist. “Through PRECISE, we’ve demonstrated that using MRI and MRI-targeted biopsies as an alternative to standard biopsies, can effectively detect clinically significant cancers, but avoid overdiagnosing clinically insignificant cancers. This means reducing the number of needles or eliminating biopsy altogether if a patient doesn’t need it. For our health system, this alternative may present an opportunity to use our resources more effectively.”

Haider has played a leading role in integrating the PRECISE findings into Cancer Care Ontario (CCO) guidelines for prostate cancer management. The study’s findings influenced CCO’s Prostate MRI Guideline 27-2 and will be implemented this year, meaning more prostate cancer patients across Ontario may be spared unnecessary biopsies and treatment thanks to MRI and MRI-targeted biopsies.

Read the news release

February 4, 2021

Clinical trial: Using MRI for prostate cancer diagnosis equals or beats current standard

Phase III clinical trial of men with a clinical suspicion of prostate cancer finds MRI with targeted biopsies to be more accurate at diagnosis and less intrusive than current standard

Toronto – (February 4, 2021) The results of a Phase III randomized clinical trial have shown that when it comes to detecting clinically significant prostate cancer, Magnetic Resonance Imaging (MRI) with targeted biopsies (MRI-TBx) matches the current standard and brings a multitude of advantages. The PRostate Evaluation for Clinically Important Disease: MRI vs Standard Evaluation Procedures (PRECISE)study will help to make prostate cancer diagnosis more accurate and less invasive.

PRECISE included 453 participants at Canadian academic cancer centres who were either assigned to receive MRI imaging followed by MRI-TBx of suspicious areas (identified by MRI), or the current standard of care of a systematic 12-core transrectal ultrasound-guided (TRUS) biopsy (TRUS-Bx).

Key findings:

  • MRI with targeted biopsy found five per cent more clinically significant prostate cancers compared to those receiving systematic TRUS-Bx biopsies, conclusively demonstrating the method can at least match the performance of the current standard of care.
  • Compared to standard TRUS-Bx, the MRI-TBx were found to be better in identifying clinically significant cancers.
  • More than a third of patients in the MRI arm of the trial avoided biopsies altogether following negative imaging results. Those individuals received a follow-up MRI in two years’ time.
  • Those who did have biopsies in the MRI arm had significantly fewer samples taken when compared to systematic TRUS-Bx, resulting in less pain and discomfort for patients. Moreover, the MRI arm had a decreased adverse event profile, including less hematuria (blood in the urine) and incontinence.
  • There is a major unmet need for a test that identifies clinically significant prostate cancer while avoiding overdiagnosing clinically insignificant cancers. Use of MRI reduced the unnecessary diagnosis of slow growing, clinically insignificant prostate cancers by 55 per cent.

These findings show decisively that MRI together with targeted biopsies offer patients a less invasive procedure, the chance to avoid a biopsy all together and can help avoid the over-treatment of clinically insignificant prostate cancer – all while detecting a higher rate of clinically significant cancers.

“My colleagues and I are thrilled about these results that show, without a doubt, that imaging and targeted biopsies are the future of prostate cancer diagnosis. We can catch more of the cancers we should be treating, avoid unnecessary treatment at the same time and improve the quality of life for our patients.” says Dr. Laurence Klotz, Chair of Prostate Cancer Research at Sunnybrook Health Sciences Centre and lead author of the study. “We thank the study participants and our funders for their support and look forward to continuing our efforts to have this technology used more widely.”

“The study’s findings have influenced Ontario Health-Cancer Care Ontario’s upcoming, updated Prostate MRI Guidelines, which will be released this year,” says Dr. Masoom Haider, co-lead of the study and Professor of Medical Imaging at the University of Toronto, and Clinician Scientist with the Ontario Institute for Cancer Research (OICR). “I am pleased to see our research produce results that will make a real difference in how prostate cancer is diagnosed and improve the lives of patients.”

“I congratulate Dr. Klotz and the PRECISE team on this truly impactful research which will change clinical care and make a difference for men with prostate cancer,” says Dr. Christine Williams, Deputy Director and Head, Clinical Translation, OICR. “It is a great example of how, with our partners, we are moving research innovations to the clinic to improve the lives of patients and treat cancer with improved precision.”

“These practice-changing results will have a significant and positive impact on the roughly 64 Canadians who are diagnosed with prostate cancer every day. Thanks to the efforts of Dr. Klotz and his team, people will need to undergo fewer biopsies and for some of them, they will be spared from unnecessary biopsies and treatments altogether,” says Dr. Stuart Edmonds, Executive Vice President, Mission, Research and Advocacy at the Canadian Cancer Society. “We are proud to support this research, which will help people with prostate cancer live longer, fuller lives.”

“At Movember, we are honoured to play a role in funding cutting-edge research like the PRECISE study, ultimately helping to provide more positive outcomes for men living with or beyond a prostate cancer diagnosis,” says Todd Minerson, Country Director for Movember Canada.  

PRECISE was funded by the Canadian Cancer Society with funds provided by Movember and by the Ontario Institute for Cancer Research.

About the Ontario Institute for Cancer Research

OICR is a collaborative, not-for-profit research institute funded by the Government of Ontario. We conduct and enable high-impact translational cancer research to accelerate the development of discoveries for patients around the world while maximizing the economic benefit of this research for the people of Ontario. For more information visit http://www.oicr.on.ca.

About the Canadian Cancer Society

The Canadian Cancer Society (CCS) is the only national charity that supports Canadians with all cancers in communities across the country. No other organization does what we do; we are the voice for Canadians who care about cancer. We fund groundbreaking research, provide a support system for all those affected by cancer and shape health policies to prevent cancer and support those living with the disease.

Help us make a difference. Call 1-888-939-3333 or visit cancer.ca today.

About Movember

Movember is the leading charity changing the face of men’s health on a global scale, focusing on mental health and suicide prevention, prostate cancer and testicular cancer. The charity raises funds to deliver innovative, breakthrough research and support programs that enable men to live happier, healthier and longer lives. Committed to disrupting the status quo, millions have joined the movement, helping fund over 1,250 projects around the world. In addition to tackling key health issues faced by men, Movember is working to encourage men to stay healthy in all areas of their life, with a focus on men staying socially connected, and becoming more open to discussing their health and significant moments in their lives. The charity’s vision is to have an everlasting impact on the face of men’s health. To donate or learn more, please visit Movember.com.

December 3, 2020

Happy holidays from OICR

A holiday message from Dr. Laszlo Radvanyi, OICR’s President and Scientific Director:

This year has presented immense challenges and hardships for people around the world, including cancer patients, researchers, clinicians and many others in the OICR community.

As I reflect on what has transpired over 2020, I think the most lasting memory will be the amazing adaptability of our staff, funded researchers, leadership and partners that has allowed us to continue pressing ahead in the fight against cancer, all while contributing to COVID-19 research and staying safe. I thank everyone for their remarkable contributions to cancer research during this difficult time and for being part of the historic scientific campaign against COVID-19, while keeping our cancer focus solidly intact.

While the year did not go as anyone planned, we have continued to make a difference for cancer patients by advancing cutting-edge solutions for preventing, screening, diagnosing and treating cancer. Of particular note this year was the Pan-Cancer Analysis of Whole Genomes (PCAWG) project coming to its climax, generating astounding insights into cancer genomics that are fueling entirely new ways to approach cancer such as developing new tools and approaches to interrogate the role of non-coding regions of the genome. This project is emblematic of the efforts of OICR researchers across our programs to collaborate and find truly novel solutions to the many challenges we face in improving the lives of cancer patients. The scientific network of investigators we fund has also made tremendous contributions, including advancing new drug targets and cell therapy approaches against cancer as well as inroads in understanding cancer therapeutic resistance via cancer stem cells and uncovering novel molecular subsets of cancers, such as pancreatic cancer.

Earlier this year a positive international external review found that OICR is making a true impact and is on the right track, having built a firm foundation to reinforce our model and take the next steps in furthering our impact. Through consultations with our stakeholders, we have developed a bold and visionary new strategic plan that will expand our focus on early cancer detection and intervention as well as strengthen our growing and successful drug discovery efforts. This plan builds not only on our current momentum, but also further deepens collaborations with our provincial, national and global partners.

Of course, our progress thus far would not be possible without the support of the Government of Ontario through the Ministry of Colleges and Universities – I thank them for their continued investment in made-in-Ontario cancer innovations and belief in our vision of “cancer solved together”. I also thank our partners in cancer research and care at cancer centres, research institutes and universities across Ontario for their continued collaboration and engagement. Together we have continued to perform world class research, improve cancer care and bring real economic benefits to Ontario’s economy.

In closing, I note that many of us will not be able to celebrate the holidays as we have in years past. While this is unfortunate, we must focus on the good we are doing for ourselves, our loved ones and our communities by doing our part for public health. I wish happy holidays and a happy new year to all as we look forward to a much brighter year ahead. Please take care and stay safe.

Sincerly,

Dr. Laszlo Radvanyi
President and Scientific Director, OICR

November 25, 2020

Cancer research through COVID: A drug discovery student’s perspective

Despite disruptions, cancer researchers across Ontario are continuing to make scientific progress in labs and at home. Here, Vivian discusses her master’s project, discovering drug targets for future immunotherapies.

October 7, 2020

Cancer research during COVID19 – Vivian Gao

Vivian talks about the research that OICR is doing during COVID-19 and the kinds of safety precautions that OICR is taking.

August 31, 2020

Research from home: Kelly McDonald

Learn about the research that the Ontario Health Study has been doing during COVID-19 and how scientists have managed to do this work from home.

June 24, 2020

Philanthropic donation moves The Alex U. Soyka Pancreatic Cancer Research Project: An International Partnership into Phase II

Ontario-Israel collaboration to explore personalized treatment and improved diagnostics for pancreatic cancer

Group of logos

Toronto – (June 24, 2020) A second significant multi-year commitment from Sylvia M. G. Soyka, Director, and the Alex U. Soyka Foundation to the Canadian Friends of the Hebrew University of Jerusalem (CFHU) will allow researchers from the Ontario Institute for Cancer Research (OICR), the Hebrew University’s Institute for Medical Research Israel-Canada (IMRIC) and Sheba Medical Center to conduct The Alex U. Soyka Pancreatic Cancer Research Project: Phase II – An International Partnership (Soyka Project).

Phase II builds upon the outstanding achievements of Phase I of the Soyka Project by fostering further collaboration between Israeli and Ontario researchers, focusing on three main research avenues in pancreatic cancer – to develop effective patient-specific treatment courses, address the challenges of tumour cell heterogeneity and create new methods for early-stage diagnosis.

As a measure of its impact so far, Phase I of the Soyka Project has been cited in more than 18 peer-reviewed papers on pancreatic cancer including manuscripts in the prestigious journals Nature Genetics, Nature Medicine and Cancer Cell.  Phase II of the Soyka Project will provide eight of Israel’s leading cancer researchers with funds to explore the molecular origins of pancreatic cancer, as well as novel diagnostic biomarkers and therapeutic approaches. These fellowships are key to the multi-disciplinary approach of the Soyka Project and this round of funding will see new scientists joining the team with expertise in single-cell RNA sequencing and bioinformatics, some of the most advanced approaches used in cancer research today.

A central component of Phase II is to increase the opportunity for patients at the Sheba Medical Center in Israel to be molecularly profiled according to the COMPASS clinical trial guidelines. COMPASS is a world-leading initiative led by Dr. Steven Gallinger, supported by OICR and based at the University Health Network in Toronto, that uses genomic and transcriptomic information from patient tumours to personalize treatment with the aim of improving outcomes. The data collected through COMPASS will also be used by Soyka Project scientists to dig deep into the inner workings of pancreatic cancer.

“I feel proud and privileged to fund Phase II of this international collaboration in pancreatic cancer research,” says Sylvia M. G. Soyka. “In the world of cancer research, much progress has been made in recent years, but pancreatic cancer remains a deadly disease with a dismal less than 10% five-year survival rate. When we started Phase I in 2014, the five-year survival rate was less than 5%, but there is clearly a long way to go. In 2010, my father, a man fully engaged in every aspect of life who took great pains to look after his health, the sort of person who was going to live well forever, was diagnosed out of the blue and died three months to the day later. The Soyka Project is his legacy. Phase I was highly successful, in no small part due to the collaboration of the dedicated scientists, within and between the teams, which created new directions. In the context of today’s world, I feel strongly that the fact of the collaboration alone, which requires both trust and generosity of spirit, sets an important example which should be emulated. The rewards of Phase II will be ours as well as theirs.”

“I am extremely thankful to Sylvia Soyka for her generous funding of this cutting-edge research program. Pancreatic cancer is notoriously difficult to detect and treat and patients need better options,” says Dr. Laszlo Radvanyi, President and Scientific Director, OICR. “The Soyka Project is an incredible example of the benefits of international scientific collaboration that will reveal important insights into detecting pancreatic cancer earlier and developing precision medicine tools for improved treatment. We are thrilled to continue this important work with our partners in Israel.”

“Sylvia Soyka is the driving force and inspiration behind The Alex U. Soyka Pancreatic Cancer Research Project that started six years ago and now, her recent generous donation will allow the second phase of research,” says Prof. Haya Lorberboum-Galski, Chair of IMRIC. “Her longstanding support is of vast importance to the researchers at IMRIC as it will enable us to continue our ongoing endeavour to decipher the basic molecular aspects of one of the deadliest cancers – pancreatic cancer. We hope this exciting work, in collaboration with OICR, will lead to new approaches for early diagnosis, prevention, treatment and a cure.”

“Sylvia Soyka is an exemplary philanthropic leader who decided to tackle one of the most challenging and underfunded cancers,” says Rami Kleinmann, President and CEO of CFHU. “Together with an outstanding team of researchers and practitioners from Canada and Israel, she managed to help make substantial progress in understanding the disease. We hope that with the current funding of Phase II, we will be able to take it even further.”

About The Alex U. Soyka Pancreatic Cancer Research Project: Phase II – An International Partnership (Soyka Project)

Alex U. Soyka was a committed supporter of the Hebrew University through the CFHU in Montreal. Following his death from pancreatic cancer in 2010, his daughter Sylvia M. G. Soyka, Director, and the Alex U. Soyka Foundation, made a multi-year funding commitment to CFHU to launch The Alex U. Soyka Pancreatic Cancer Research Project.

About the Ontario Institute for Cancer Research (OICR)
OICR is a collaborative, not-for-profit research institute funded by the Government of Ontario. We conduct and enable high-impact translational cancer research to accelerate the development of discoveries for patients around the world while maximizing the economic benefit of this research for the people of Ontario. For more information visit https://oicr.on.ca/

About the Institute for Medical Research Israel-Canada (IMRIC)

The Institute conducts basic and translational/precision research in the field of biomedicine with a main focus on cancer research. The Institute scientists work in a multidisciplinary enterprise that is essential for understanding most of the diseases that currently challenge medical science, including cancer, for the benefit of patients all over the world. For more information visit https://medicine.ekmd.huji.ac.il/En/academicUnits/imric/Pages/Default.aspx

About the Canadian Friends of Hebrew University (CFHU)

CFHU facilitates academic and research partnerships between Canada and Israel, as well as establishes scholarships, supports research and cultivates student and faculty exchanges. Albert Einstein, Martin Buber, Chaim Weizmann and Sigmund Freud were among the university’s founders whose genius inspired a university without limits or borders. CFHU is dedicated to supporting Hebrew University in its efforts to remain one of the most innovative learning institutions in the world.

OICR media contact
Christopher Needles
Director, Communications
Ontario Institute for Cancer Research
416-319-5252
christopher.needles@oicr.on.ca

CFHU media contact
Robert Sarner
Senior National Director, Communication
Canadian Friends of the Hebrew University
416-485-8000, Ext. 111
rsarner@cfhu.org

June 23, 2020

FACIT backs made-in-Ontario data science and medtech innovations through Prospects Oncology Fund

Group of logos

Replica Analytics & Sunnybrook’s Czarnota Lab receive key seed funding to de-risk Ontario intellectual property

TORONTO, ON (June 23, 2020) – FACIT, a commercialization venture firm, announced the newest recipients of Ontario First seed capital through the latest round of its Prospects Oncology Fund: Ottawa-based data science start-up Replica Analytics Ltd., and medtech innovator Dr. Greg Czarnota of Toronto’s Sunnybrook Research Institute.

Replica Analytics Ltd. is a new venture created by Dr. Khaled El Emam, a serial entrepreneur whose previous venture, FACIT-backed Privacy Analytics, was acquired by IMS Health. Replica Analytics is developing modeling software to create synthetic data based on real clinical datasets. High quality synthetic data is increasingly sought after by researchers, the pharmaceutical industry, and other entrepreneurs who require the datasets to build new models and enable AI innovation in healthcare.

Continue reading – FACIT backs made-in-Ontario data science and medtech innovations through Prospects Oncology Fund
Next Page »