January 30, 2018

Early results from COMPASS trial demonstrate benefits of using genomic sequencing to guide treatment for pancreatic cancer

Pancreatic Cancer and compass icon

Genomic profiling has allowed physicians to customize treatments for patients with many types of cancer, but bringing this technology to bear against advanced pancreatic cancer has proven to be extremely difficult. OICR’s pancreatic cancer Translational Research Initiative, called PanCuRx, has been conducting a first-of-its-kind clinical trial called COMPASS to evaluate the feasibility of using real time genomic sequencing in pancreatic cancer care. The research team recently reported early results from the trial, which show how they overcame the challenges of genomic profiling specific to pancreatic cancer and gained new insights about the disease.

PanCuRx is focused on improving treatment for pancreatic adenocarcinoma (PDAC), the most common form of pancreatic cancer and the fourth leading cause of cancer death in Canada. The group’s approach centres around understanding the genetics and biology of PDAC to inform the selection of therapies, as well as the development of new treatments.

Continue reading – Early results from COMPASS trial demonstrate benefits of using genomic sequencing to guide treatment for pancreatic cancer

September 24, 2020

Clinical study simplifies precision medicine for pancreatic cancer patients

Liver biopsy image from a patient with metastatic pancreatic ductal adenocarcinoma. Dual immunohistochemistry reveals expression of GATA6 (brown) or CK5 (magenta) in distinct cells within the same neoplastic glands. (Credit: Clinical Cancer Research)

OICR-supported researchers discover new way to match advanced pancreatic cancer patients with the most appropriate treatment for their disease

Over the next 10 years, it is expected that pancreatic ductal adenocarcinoma (PDAC) will become the second leading cause of cancer-related deaths in North America. Precision medicine for PDAC is dependent on understanding which cancers will respond to treatment and which will not, but progress in this space has been limited by challenges including the complexity and severity of the disease. With more than 10 years of clinical and genomic data from the COMPASS trial, OICR-supported researchers have recently discovered a new, simplified way to match patients with the most appropriate treatment for their disease by measuring the expression of two genes, GATA6 and Keratin 5. Their discovery was recently published in Clinical Cancer Research.

Dr. Grainne O’Kane

“Even with current chemotherapies, patients diagnosed with PDAC have a median survival of one year,” says first author Dr. Grainne O’Kane, Medical Oncologist at the Princess Margaret Cancer Centre. “This work is dedicated to extending the lives of these individuals.”

The study group discovered that by measuring the expression of GATA6 and Keratin 5 in a patient’s tumour sample, they can differentiate subtypes of advanced pancreatic cancer. The different subtypes of the disease tend to respond to treatments differently, so clinicians and patients could potentially use this information to help guide treatment selection.

More specifically, the group showed cancers with low GATA6 expression and high Keratin 5 expression tend to be resistant to mFFX, one of the usual chemotherapy regimens. The study highlights the need for new, effective treatments for these patients.

Dr. Sandra Fischer

“To discover these specific genes, we used sophisticated sequencing and in-depth analyses, but what we’ve found is that this classification can be done using simpler, widespread pathology techniques,” says senior author Dr. Sandra Fischer, Staff Pathologist at University Health Network. “This is promising because these discoveries can be easily applied in the clinic, and translated into patient care.”

The article was selected by Clinical Cancer Research to be highlighted on the front cover of the September 2020 issue and featured as one of the Issue Highlights.

Through the COMPASS trial, the researchers plan to further evaluate and validate this classification technique.

“I’m proud to be part of this team,” says Fischer. “Every step we take is a stride forward towards more precision and effective treatment for patients with this devastating disease.”

In December 2015, PanCuRx launched a clinical trial called Comprehensive Molecular Characterization of Advanced Ductal Pancreas Adenocarcinoma for Better Treatment Selection: A Prospective Study (COMPASS). The trial is designed to show that the sequencing of pancreatic tumours can be performed in a clinical setting and results delivered within a clinically-relevant timeframe to help guide treatment for individual patients. Read more on the latest COMPASS findings.

July 24, 2020

OICR research leads to new pancreatic cancer clinical trial with aim to change the standard of care for patients

New pancreatic cancer trial, NeoPancONE, launches across Canada

NeoPancONE

Adapted from Pancreatic Cancer Canada’s press release.

OICR’s PanCuRx team and collaborators have launched NeoPancONE, a Phase II clinical trial that will evaluate a potentially curative treatment strategy for operable pancreatic cancer. The trial, which is supported by Pancreatic Cancer Canada, will recruit patients at 10 cancer centres across the country to evaluate the effectiveness and feasibility of peri-operative chemotherapy – chemo treatment before and after surgery.

Typically, only 50 per cent of pancreatic cancer patients receive chemotherapy after surgery due to a range of personal and health reasons. NeoPancONE will help evaluate whether chemotherapy treatment before surgery can help extend the lives of these individuals.

Continue reading – OICR research leads to new pancreatic cancer clinical trial with aim to change the standard of care for patients

June 24, 2020

Philanthropic donation moves The Alex U. Soyka Pancreatic Cancer Research Project: An International Partnership into Phase II

Ontario-Israel collaboration to explore personalized treatment and improved diagnostics for pancreatic cancer

Group of logos

Toronto – (June 24, 2020) A second significant multi-year commitment from Sylvia M. G. Soyka, Director, and the Alex U. Soyka Foundation to the Canadian Friends of the Hebrew University of Jerusalem (CFHU) will allow researchers from the Ontario Institute for Cancer Research (OICR), the Hebrew University’s Institute for Medical Research Israel-Canada (IMRIC) and Sheba Medical Center to conduct The Alex U. Soyka Pancreatic Cancer Research Project: Phase II – An International Partnership (Soyka Project).

Phase II builds upon the outstanding achievements of Phase I of the Soyka Project by fostering further collaboration between Israeli and Ontario researchers, focusing on three main research avenues in pancreatic cancer – to develop effective patient-specific treatment courses, address the challenges of tumour cell heterogeneity and create new methods for early-stage diagnosis.

As a measure of its impact so far, Phase I of the Soyka Project has been cited in more than 18 peer-reviewed papers on pancreatic cancer including manuscripts in the prestigious journals Nature Genetics, Nature Medicine and Cancer Cell.  Phase II of the Soyka Project will provide eight of Israel’s leading cancer researchers with funds to explore the molecular origins of pancreatic cancer, as well as novel diagnostic biomarkers and therapeutic approaches. These fellowships are key to the multi-disciplinary approach of the Soyka Project and this round of funding will see new scientists joining the team with expertise in single-cell RNA sequencing and bioinformatics, some of the most advanced approaches used in cancer research today.

A central component of Phase II is to increase the opportunity for patients at the Sheba Medical Center in Israel to be molecularly profiled according to the COMPASS clinical trial guidelines. COMPASS is a world-leading initiative led by Dr. Steven Gallinger, supported by OICR and based at the University Health Network in Toronto, that uses genomic and transcriptomic information from patient tumours to personalize treatment with the aim of improving outcomes. The data collected through COMPASS will also be used by Soyka Project scientists to dig deep into the inner workings of pancreatic cancer.

“I feel proud and privileged to fund Phase II of this international collaboration in pancreatic cancer research,” says Sylvia M. G. Soyka. “In the world of cancer research, much progress has been made in recent years, but pancreatic cancer remains a deadly disease with a dismal less than 10% five-year survival rate. When we started Phase I in 2014, the five-year survival rate was less than 5%, but there is clearly a long way to go. In 2010, my father, a man fully engaged in every aspect of life who took great pains to look after his health, the sort of person who was going to live well forever, was diagnosed out of the blue and died three months to the day later. The Soyka Project is his legacy. Phase I was highly successful, in no small part due to the collaboration of the dedicated scientists, within and between the teams, which created new directions. In the context of today’s world, I feel strongly that the fact of the collaboration alone, which requires both trust and generosity of spirit, sets an important example which should be emulated. The rewards of Phase II will be ours as well as theirs.”

“I am extremely thankful to Sylvia Soyka for her generous funding of this cutting-edge research program. Pancreatic cancer is notoriously difficult to detect and treat and patients need better options,” says Dr. Laszlo Radvanyi, President and Scientific Director, OICR. “The Soyka Project is an incredible example of the benefits of international scientific collaboration that will reveal important insights into detecting pancreatic cancer earlier and developing precision medicine tools for improved treatment. We are thrilled to continue this important work with our partners in Israel.”

“Sylvia Soyka is the driving force and inspiration behind The Alex U. Soyka Pancreatic Cancer Research Project that started six years ago and now, her recent generous donation will allow the second phase of research,” says Prof. Haya Lorberboum-Galski, Chair of IMRIC. “Her longstanding support is of vast importance to the researchers at IMRIC as it will enable us to continue our ongoing endeavour to decipher the basic molecular aspects of one of the deadliest cancers – pancreatic cancer. We hope this exciting work, in collaboration with OICR, will lead to new approaches for early diagnosis, prevention, treatment and a cure.”

“Sylvia Soyka is an exemplary philanthropic leader who decided to tackle one of the most challenging and underfunded cancers,” says Rami Kleinmann, President and CEO of CFHU. “Together with an outstanding team of researchers and practitioners from Canada and Israel, she managed to help make substantial progress in understanding the disease. We hope that with the current funding of Phase II, we will be able to take it even further.”

About The Alex U. Soyka Pancreatic Cancer Research Project: Phase II – An International Partnership (Soyka Project)

Alex U. Soyka was a committed supporter of the Hebrew University through the CFHU in Montreal. Following his death from pancreatic cancer in 2010, his daughter Sylvia M. G. Soyka, Director, and the Alex U. Soyka Foundation, made a multi-year funding commitment to CFHU to launch The Alex U. Soyka Pancreatic Cancer Research Project.

About the Ontario Institute for Cancer Research (OICR)
OICR is a collaborative, not-for-profit research institute funded by the Government of Ontario. We conduct and enable high-impact translational cancer research to accelerate the development of discoveries for patients around the world while maximizing the economic benefit of this research for the people of Ontario. For more information visit https://oicr.on.ca/

About the Institute for Medical Research Israel-Canada (IMRIC)

The Institute conducts basic and translational/precision research in the field of biomedicine with a main focus on cancer research. The Institute scientists work in a multidisciplinary enterprise that is essential for understanding most of the diseases that currently challenge medical science, including cancer, for the benefit of patients all over the world. For more information visit https://medicine.ekmd.huji.ac.il/En/academicUnits/imric/Pages/Default.aspx

About the Canadian Friends of Hebrew University (CFHU)

CFHU facilitates academic and research partnerships between Canada and Israel, as well as establishes scholarships, supports research and cultivates student and faculty exchanges. Albert Einstein, Martin Buber, Chaim Weizmann and Sigmund Freud were among the university’s founders whose genius inspired a university without limits or borders. CFHU is dedicated to supporting Hebrew University in its efforts to remain one of the most innovative learning institutions in the world.

OICR media contact
Christopher Needles
Director, Communications
Ontario Institute for Cancer Research
416-319-5252
christopher.needles@oicr.on.ca

CFHU media contact
Robert Sarner
Senior National Director, Communication
Canadian Friends of the Hebrew University
416-485-8000, Ext. 111
rsarner@cfhu.org

January 13, 2020

Unique Toronto-based clinical trial reveals new subtypes of advanced pancreatic cancer

Drs. Faiyaz Notta and Steven Gallinger, Co-Leaders of OICR’s Pancreatic Cancer Translational Research Initiative (PanCuRx).

Researchers identify five subtypes of pancreatic cancer, uncovering new opportunities for targeted treatment of the aggressive disease

Toronto – (January 13, 2020) Researchers at the Ontario Institute for Cancer Research (OICR) and the University Health Network (UHN) have discovered detailed new information about the subtypes of pancreatic cancer. A better understanding of the disease groups may lead to new treatment options and improved clinical outcomes for this lethal disease.

The study, published today in Nature Genetics, represents the most comprehensive analysis of the molecular subtypes of pancreatic cancer to date. Through detailed genomic and transcriptomic analyses, the research group identified five distinct subtypes of the disease (Basal-like-A, Basal-like-B, Classical-A, Classical-B, and Hybrid) with unique molecular properties that could be targeted with novel chemotherapies, biologics and immunotherapies.

“Therapy development for pancreatic cancer has been hindered by an incomplete knowledge of the molecular subtypes of this deadly disease,” says lead author Dr. Faiyaz Notta, Co-Leader of OICR’s Pancreatic Cancer Translational Research Initiative (PanCuRx) and Scientist at UHN’s Princess Margaret Cancer Centre. “By rigorously analyzing advanced pancreatic cancers – which is the stage of disease that most patients have when they’re diagnosed – we were able to create a framework. This will help us develop better predictive models of disease progression that can assist in personalizing treatment decisions and lead to new targeted therapies.”

The study is based on data from more than 300 patients with both early stage and advanced pancreatic cancer who participated in COMPASS, a first-of-its-kind clinical trial that is breaking new ground in discovery science and personalized pancreatic cancer treatment. COMPASS is enabled by advanced pathology laboratory techniques at UHN and OICR, and next generation sequencing at OICR.

“Most pancreatic cancer research is focused solely on early stage – or resectable – tumours, but in reality, pancreatic cancer is often found in patients after it has advanced and spread to other organs,” says Notta. “COMPASS allowed us to look into these advanced cancers while treating these patients, develop a better understanding of the biology behind metastatic pancreatic cancer, and shed light on the mechanisms driving disease progression.”

Interestingly, the Basal-like-A subtype, which had been difficult to observe before this study, was linked with a specific genetic abnormality. Most of the Basal-like-A tumours harboured several copies of a mutated KRAS gene, also known as a genetic amplification of mutant KRAS. The research group hypothesizes that some of the subtypes arise from specific genetic changes that occur as pancreatic cancer develops.

“This research opens new doors for therapeutic development,” says Dr. Steven Gallinger, Co-Leader of OICR’s PanCuRx, Surgical Oncologist at UHN and Senior Investigator, Lunenfeld Tanenbaum Research Institute at Mount Sinai Hospital. “We look forward to capitalizing on the promise of these discoveries, building on our understanding of pancreatic cancer subtypes, and bringing new treatments to patients with the disease.”

This research was supported by OICR through funding provided by the Government of Ontario, and by the Wallace McCain Centre for Pancreatic Cancer by the Princess Margaret Cancer Foundation, the Terry Fox Research Institute, the Canadian Cancer Society Research Institute, the Pancreatic Cancer Canada Foundation, the Canadian Friends of the Hebrew University and the Cancer Research Society (no. 23383).

November 6, 2019

FACIT launches assessment of venture philanthropy models to scale Canadian commercialization of cancer research

Ms. Donna Parr and Dr. Niclas Stiernholm recruited to broaden public/private equity expertise

Ms. Donna Parr and Dr. Niclas Stiernholm

TORONTO, ON (November 6, 2019) – FACIT, a commercialization venture venture firm, reported on the expansion of its Executive-in-Residence program and new strategic initiatives. Ontario is home to world-leading cancer research connected through the collaboration model established by the Ontario Institute for Cancer Research (OICR), FACIT’s strategic partner. Growing market signals suggest Canadian philanthropy, oncologists and patients want more discoveries translated into therapies and technologies that directly impact cancer care, while also supporting Canadian entrepreneurialism. Commercialization of innovations is aligned with OICR’s translational mission and a strategic imperative for the province’s university and research hospital partners. 

Continue reading – FACIT launches assessment of venture philanthropy models to scale Canadian commercialization of cancer research

October 30, 2019

FACIT and University of Toronto launch precision medicine company: Cellular Analytics

Next generation liquid biopsy platform to revolutionize companion diagnostics

TORONTO, ON (October 30, 2019) – FACIT, a commercialization venture group, together with the University of Toronto (“U of T”), announced the creation of Ontario-based Cellular Analytics (the “Company”). Cellular Analytics is founded upon a proprietary microfluidic platform that enables molecular characterization of cancer at the level of single circulating tumour cells. The technology quantitatively detects sensitivity to immune-oncology agents ‘on-chip’ at both significantly lower sample volumes and at a fraction of the cost. Seed capital from FACIT’s Compass Rose Oncology Fund will be used to develop the non-invasive, commercial prototype of the Company’s lead product. This critical capital also allows Cellular Analytics to maintain its momentum and continue strategic discussions with potential partners and investors to attract follow-on financing.

The platform, with an initial application in lung cancer, was discovered at the U of T lab of Dr. Shana Kelley. The professor and serial entrepreneur will act as the Chief Scientific Officer of Cellular Analytics. “Dr. Kelley’s technology is rapid, exquisitely accurate and inexpensive, which positions the Company well for clinical application across a range of cancers and competing in the diagnostics market,” said Dr. David O’Neill, President, FACIT. “Partnering with the University of Toronto on exciting new biotechnology companies like Cellular Analytics is aligned with FACIT and OICR’s joint strategy to support entrepreneurship and translate the benefits of research to patients and the Ontario economy.”

Continue reading – FACIT and University of Toronto launch precision medicine company: Cellular Analytics

September 26, 2019

FACIT’s Prospects Oncology Fund invests in Ontario-developed medical device and novel therapeutic platform technologies

Niche early-stage investment program seeds Ontario’s developing pipeline of oncology assets 

TORONTO, ON (September 26, 2019) – Three promising Ontario-based oncology innovations are recipients of seed capital through the latest round of FACIT’s Prospects Oncology Fund. Medical device start-up Xpan Inc., Dr. Igor Stagljar of the University of Toronto, and the Drug Discovery Program at the Ontario Institute for Cancer Research (OICR) were selected to receive seed funding among a top-tier pool of applicants.

Xpan Inc., whose CEO Zaid Atto also won FACIT’s Falcons’ Fortunes pitch competition earlier this year, is developing expandable surgical access ports that aim to increase safety and efficiency of minimally invasive surgeries. Dr. Stagljar is developing a unique and disruptive system for detecting protein-protein interactions in real time for drug discovery applications, while OICR’s Drug Discovery Program, led by Dr. Rima Al-awar, will receive funds towards the development of a platform targeting multiple members of the WD40 repeat domain (WDR) family with small molecules. The lattermost project builds on OICR and FACIT’s recent success in executing a $1B USD strategic transaction with Celgene for a related WDR5 asset.

Continue reading – FACIT’s Prospects Oncology Fund invests in Ontario-developed medical device and novel therapeutic platform technologies

January 25, 2019

Study reveals mechanism driving spread of advanced pancreatic cancer

Rob Denroche, bioinformatician and Project Leader of PanCuRx.

Large-scale pancreatic cancer study distinguishes primary from metastatic tumours, uncovering new genomic biomarkers that could help guide treatment selection

Over the next decade, pancreatic ductal adenocarcinoma (PDAC) – the most common type of pancreatic cancer – is projected to become the second leading cause of all cancer mortality. A better understanding of how PDAC changes when it metastasizes – or spreads from the pancreas to other organs – may help researchers find ways to treat the disease more effectively.

A study by OICR researchers and collaborators, published today in Cancer Cell, showed that the cells in advanced pancreatic tumours grow – or cycle – faster than those in early tumours, revealing one of the key reasons that the disease can advance so quickly.  OICR’s Pancreatic Cancer Translational Research Initiative, PanCuRx, investigated the whole genomes and transcriptomes of more than 300 PDAC tumours, contrasting cells from primary tumours and cells from metastatic tumours. This distinction may help clinicians advise patients about treatment, whether it be surgery, chemotherapy or radiation.

“Often, a patient’s primary pancreatic cancer recurs after surgery and chemotherapy, and there is limited knowledge of metastases to guide the next course of action. In less common ‘metachronous’ cases, treatment depends on whether the second tumour is new, or if it grew from remnants of a previous tumour,” says Dr. Ashton Connor, chief resident in the General Surgery training program at the University of Toronto and lead author of the study. “In this study, we explored differences between primary and metastatic tumours in the hopes of better understanding the mechanisms of cancer cell spread from the pancreas, and to ultimately inform their treatment.”

Over the last decade, PanCuRx has assembled the largest collection of genomic and transcriptomic data on primary and metastatic PDAC tumours. The initiative continues to collect samples through the COMPASS clinical trial today.

“There have been very few studies of advanced PDAC, so our rich dataset is very valuable to the future of pancreatic cancer research,” says Rob Denroche, bioinformatician, Project Leader of PanCuRx and co-author of the study. “Research groups from Germany, Brazil, Japan and across North America have been interested in the data that we’ve collected and we’re happy to enable their discoveries.”

PanCuRx collaborations span four continents, largely due to their enriched dataset on metastatic PDAC.

Through COMPASS, PanCuRx will continue to build on these findings and test if cell progression could be used to inform treatment selection in the clinic.

“This work is foundational to our understanding of advanced pancreatic cancer,” says Dr. Steven Gallinger, PanCuRx Director and Head of the Hepatobiliary/Pancreatic Surgical Oncology Program at UHN and Mount Sinai Hospital. “We look forward to building on this understanding to better inform treatment selection for those with this terrible disease.”

January 10, 2019

FACIT makes follow-on investment in AI-based genomics company, DNAstack

Capital leverages Ontario’s strengths in genomics and informatics, deepens FACIT’s tech portfolio

Continue reading – FACIT makes follow-on investment in AI-based genomics company, DNAstack

November 15, 2018

Meet the researchers – Nicholas Khuu

What does a ball of elastic bands have to do with cancer research? Watch Nick Khuu explain. Nick is a Quality Assurance Coordinator in OICR’s genomics lab working on sequencing for OICR’s COMPASS clinical trial. He uses an #elasticbandball to explain #sequencingcoverage and how this sequencing technique can provide extra information to health care providers when treating patients with pancreatic cancer.

March 6, 2018

Canadian pancreatic cancer research team provides personalized medicine, new hope to patients

VANCOUVER – Canadian pancreatic cancer researchers are joining forces under a Terry Fox initiative bringing new hope for patients with this deadly disease.

“For many years it’s been hopeless from a patient perspective, and we are hoping to help shift this,” says Dr. Daniel Renouf (BC Cancer, University of British Columbia) who, along with Dr. David Schaeffer (UBC, Vancouver General Hospital), is leading a $5-million pan-Canadian, precision medicine initiative recently funded by the Terry Fox Research Institute.

A lack of early detection tests. Few known symptoms. Very limited treatment options. No known biomarkers that can be used to direct therapy.  These are among the clinical challenges team EPPIC, short for Enhanced Pancreatic Cancer Profiling for Individualized Care, is tackling over the next five years to improve personalized treatments for patients with pancreatic ductal adenocarcinoma (PDAC), a disease with just a nine per cent five-year survival rate.

Continue reading – Canadian pancreatic cancer research team provides personalized medicine, new hope to patients

Next Page »